Skip to main content
Log in

Efficient iteration methods for complex systems with an indefinite matrix term

  • Published:
Calcolo Aims and scope Submit manuscript


Complex valued systems with an indefinite matrix term arise in important applications such as for certain time-harmonic partial differential equations such as the Maxwell’s equation and for the Helmholtz equation. Complex systems with symmetric positive definite matrices can be solved readily by rewriting the complex matrix system in two-by-two block matrix form with real matrices which can be efficiently solved by iteration using the preconditioned square block (PRESB) preconditioning method and preferably accelerated by the Chebyshev method. The appearances of an indefinite matrix term causes however some difficulties. To handle this we propose different forms of matrix splitting methods, with or without any parameters involved. A matrix spectral analyses is presented followed by extensive numerical comparisons of various forms of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Axelsson, O.: Iterative solution methods. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  2. Axelsson, O., Vassilevski, P.S.: A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning. SIAM J. Matrix Anal. Appl. 12, 625–644 (1991)

    Article  MathSciNet  Google Scholar 

  3. Axelsson, O., Farouq, S., Neytcheva, M.: Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems, Poisson and convection-diffusion control. Numer. Alg. 73, 631–663 (2016)

    Article  MathSciNet  Google Scholar 

  4. Axelsson, O., Liang, Z.-Z.: Parameter modified versions of preconditioning and iterative inner product free refinement methods for two-by-two block matrices. Lin. Algebra Appl. 582, 403–429 (2019)

    Article  MathSciNet  Google Scholar 

  5. Axelsson, O., Karátson, J., Magoulès, F.: Superlinear convergence using block preconditioners for the real system formulation of complex Helmholtz equations. J. Comput. Appl. Math. 340, 424–431 (2018)

    Article  MathSciNet  Google Scholar 

  6. Axelsson, O., Neytcheva, M., Ström, A.: An efficient preconditioning method for the state box-constrained optimal control problem. J. Num. Math. 26, 185–207 (2018)

    Article  MathSciNet  Google Scholar 

  7. Axelsson, O., Neytcheva, M., Ahmad, B.: A comparison of iterative methods to solve complex valued linear algebraic systems. Numer. Algorithms 66, 811–841 (2014)

    Article  MathSciNet  Google Scholar 

  8. Axelsson, O., Lukáš, D.: Preconditioning methods for eddy-current optimally controlled time-harmonic electromagnetic problems. J. Numer. Math. 27, 1–21 (2019)

    Article  MathSciNet  Google Scholar 

  9. Axelsson, O., Kucherov, A.: Real valued iterative methods for solving complex symmetric linear systems. Numer. Linear Algebra Appl. 7, 197–218 (2000)

    Article  MathSciNet  Google Scholar 

  10. Axelsson, O., Salkuyeh, D.K.: A new version of a preconditioning method for certain two-by-two block matrices with square blocks. BIT Numer. Math. 59, 321–342 (2018)

    Article  MathSciNet  Google Scholar 

  11. Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87, 93–111 (2010)

    Article  MathSciNet  Google Scholar 

  12. Bai, Z.-Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algorithms 56, 297–317 (2011)

    Article  MathSciNet  Google Scholar 

  13. Edalatpour, V., Hezari, D., Salkuyeh, D.K.: Two efficient inexact algorithms for a class of large sparse complex linear systems. Mediterr. J. Math. 13, 2301–2318 (2016)

    Article  MathSciNet  Google Scholar 

  14. Edalatpour, V., Hezari, D., Salkuyeh, D.K.: Accelerated generalized SOR method for a class of complex systems of linear equations. Math. Commun. 20, 37–52 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Hezari, D., Salkuyeh, D.K., Edalatpour, V.: Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations. Numer. Linear Algebra Appl. 22, 761–776 (2015)

    Article  MathSciNet  Google Scholar 

  16. Hezari, D., Salkuyeh, D.K., Edalatpour, V.: A new iterative method for solving a class of complex symmetric system of linear equations. Numer. Algorithms 73, 927–955 (2016)

    Article  MathSciNet  Google Scholar 

  17. Kollmann, M., Kolmbauer, M.: A preconditioned MinRes solver for time-periodic parabolic optimal control problems. Numer. Lin. Algebra Appl. 20, 761–784 (2013)

    Article  MathSciNet  Google Scholar 

  18. Liang, Z.-Z., Axelsson, O., Zhang, G.-F.: Efficient iterative solvers for a complex valued two-by-two block linear system with application to parabolic optimal control problems. Appl. Numer. Math. 152, 422–445 (2020)

    Article  MathSciNet  Google Scholar 

  19. Notay, Y.: An aggregation-based algebraic multigrid method. Electron. Trans. Numer. Anal. 37, 123–146 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Pourbagher, M., Salkuyeh, D.K.: A new two-parameter iteration method for indefinite complex symmetric linear systems. Japan J. Indust. Appl. Math. 39, 145-163 (2022)

  21. Pourbagher, M., Salkuyeh, D.K.: On the solution of a class of complex symmetric linear systems. Appl. Math. Lett. 76, 14–20 (2017)

    Article  MathSciNet  Google Scholar 

  22. Salkuyeh, D.K.: Two-step scale-splitting method for solving complex symmetric system of linear equations, math. NA. (2017) arXiv:1705.02468

  23. Salkuyeh, D.K., Hezari, D., Edalatpour, V.: Generalized SOR iterative method for a class of complex symmetric linear system of equations, Intern. J. Comput. Math. 92, 802–815 (2015)

    MATH  Google Scholar 

  24. Salkuyeh, D.K., Siahkolaei, T.S.: Two-parameter TSCSP method for solving complex symmetric system of linear equations. Calcolo 55, 8 (2018)

    Article  MathSciNet  Google Scholar 

  25. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14, 461–469 (1993)

    Article  MathSciNet  Google Scholar 

  26. Siahkolaei, T.S., Salkuyeh, D.K.: A new double-step method for solving complex Helmholtz equation, Hacet. J. Math. Stat. 49, 1245–1260 (2020)

    MathSciNet  Google Scholar 

  27. Wu, S.-L., Li, C.-X.: A splitting method for complex symmetric indefinite linear system. J. Comput. Appl. Math. 313, 343–354 (2017)

    Article  MathSciNet  Google Scholar 

  28. Yousept, I.: Optimal control of Maxwell’s equations with regularized state constraints. Comput. Optim. Appl. 52, 559–581 (2012)

    Article  MathSciNet  Google Scholar 

Download references


The authors would like to thank the referee for his/her useful suggestions and comments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Davod Khojasteh Salkuyeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axelsson, O., Pourbagher, M. & Salkuyeh, D.K. Efficient iteration methods for complex systems with an indefinite matrix term. Calcolo 59, 15 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


Mathematics Subject Classification