Inertial generalized proximal Peaceman–Rachford splitting method for separable convex programming


The Peaceman–Rachford splitting method (PRSM) is a preferred method for solving the two-block separable convex minimization problems with linear constraints at present. In this paper, we propose an inertial generalized proximal PRSM (abbreviated as IGPRSM) to improve computing efficiency, which unify the ideas of inertial proximal point and linearization technique. Both subproblems are linearized by positive semi-definite proximal matrices, and we explain why the matrix cannot be indefinite. The global convergence and the worst-case asymptotic iteration complexity are derived theoretically via the variational inequality framework. Numerical experiments on LASSO, total variation (TV) based denoising models and image decomposition problems are presented to show the effectiveness of the introduced method even compared with the state-of-the-art methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection–proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14(3), 773–782 (2004)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9(1–2), 3–11 (2001)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Bai, J., Li, J., Xu, F., Zhang, H.: Generalized symmetric ADMM for separable convex optimization. Comput. Optim. Appl. 70(1), 129–170 (2018)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Boyd, S.P., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. Arch. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  6. 6.

    Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal–dual algorithm. Math. Program. 159(1–2), 253–287 (2016)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Chang, X., Liu, S., Zhao, P., Song, D.: A generalization of linearized alternating direction method of multipliers for solving two-block separable convex programming. J. Comput. Appl. Math. 357, 251–272 (2019)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Chen, C., Chan, R.H., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8, 2239–2267 (2015)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Chen, L., Sun, D., Toh, K.C.: An efficient inexact symmetric Gauss–Seidel based majorized ADMM for high-dimensional convex composite conic programming. Math. Program. 161(1), 237–270 (2017)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Corman, E., Yuan, X.: A generalized proximal point algorithm and its convergence rate. SIAM J. Optim. 24(4), 1614–1638 (2014)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Donoho, D.L., Tsaig, Y.: Fast solution of \(l_1\)-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)

    MATH  Google Scholar 

  12. 12.

    Dou, M., Li, H., Liu, X.: An inertial proximal Peaceman–Rachford splitting method. SCI. SIN. Math. 47(2), 333–348 (2017)

    Google Scholar 

  13. 13.

    Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Eckstein, J.: Some saddle-function splitting methods for convex programming. Optim. Methods Softw. 4(1), 75–83 (1994)

    Google Scholar 

  15. 15.

    Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3), 293–318 (1992)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Fazel, M., Pong, T., Sun, D., Tseng, P.: Hankel matrix rank minimization with applications to system identification and realization. SIAM J. Matrix Anal. Appl. 34(3), 946–977 (2013)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Fortin, M., Glowinski, R.: Augmented Lagrangian Methods. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  18. 18.

    Gabay, D.: Chapter IX applications of the method of multipliers to variational inequalities. Studies in Mathematics and Its Applications, vol 15, pp 299–331 (1983).

  19. 19.

    Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    MATH  Google Scholar 

  20. 20.

    Gao, B., Ma, F.: Symmetric alternating direction method with indefinite proximal regularization for linearly constrained convex optimization. J. Optim. Theory Appl. 176(1), 178–204 (2018)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Glowinski, R.: Lectures on Numerical Methods for Non-linear Variational Problems. Tata Institute of Fundamental Research, Springer, Bombay (1980)

    MATH  Google Scholar 

  22. 22.

    Glowinski, R., Marrocco, A.: Sur l’approximation, par elements finis d’ordre un, et la resolution, par penalisation-dualit’e, d’une classe de problems de Dirichlet non lineares. Ann. Stat. 9, 41–76 (1975)

    Google Scholar 

  23. 23.

    Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. Ser. A 141(1–2), 349–382 (2013)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Gu, Y., Jiang, B., Han, D.: A semi-proximal-based strictly contractive Peaceman–Rachford splitting method. arXiv preprint arXiv:1506.02221 (2015)

  25. 25.

    Han, D., Kong, W., Zhang, W.: A partial splitting augmented Lagrangian method for low patch-rank image decomposition. J. Math. Imaging Vis. 51(1), 145–160 (2015)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Han, D., Yuan, X., Zhang, W., Cai, X.: An ADM-based splitting method for separable convex programming. Comput. Optim. Appl. 54(2), 343–369 (2013)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    He, B., Liu, H., Wang, Z., Yuan, X.: A strictly contractive Peaceman–Rachford splitting method for convex programming. SIAM J. Optim. 24(3), 1011–1040 (2014)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    He, B., Ma, F., Yuan, X.: Convergence study on the symmetric version of ADMM with larger step sizes. SIAM J. Imaging Sci. 9(3), 1467–1501 (2016)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    He, B., Ma, F., Yuan, X.: Optimal linearized alternating direction method of multipliers for convex programming. (2017)

  30. 30.

    He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22(2), 313–340 (2012)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    He, B., Yuan, X.: On the \(O(1/n)\) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    He, B., Yuan, X.: On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers. Numer. Math. 130(3), 567–577 (2015)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    He, Y., Li, H., Liu, X.: Relaxed inertial proximal Peaceman–Rachford splitting method for separable convex programming. Front. Math. China 13(3), 1–24 (2018)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Jiang, F., Wu, Z., Cai, X.: Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization. J. Ind. Manag. Optim. 13(5), 1–22 (2017)

    MathSciNet  Google Scholar 

  35. 35.

    Li, X., Sun, D., Toh, K.: A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Program. 155(1), 333–373 (2016)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Lorenz, D.A., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51(2), 311–325 (2015)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Ma, S.: Alternating proximal gradient method for convex minimization. J. Sci. Comput. 68(2), 546–572 (2016)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155(2), 447–454 (2003)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73(4), 591–597 (1967)

    MathSciNet  MATH  Google Scholar 

  41. 41.

    Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenomena 60(1–4), 259–268 (1992)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Sun, H., Tian, M., Sun, M.: The symmetric ADMM with indefinite proximal regularization and its application. J. Inequal. Appl. 2017(1), 172 (2017)

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Sun, M., Liu, J.: Generalized Peaceman–Rachford splitting method for separable convex programming with applications to image processing. J. Appl. Math. Comput. 51(1–2), 605–622 (2016)

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Sun, M., Wang, Y., Liu, J.: Generalized Peaceman–Rachford splitting method for multiple-block separable convex programming with applications to robust PCA. Calcolo 54(1), 77–94 (2017)

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Tibshirani, R.: Regression shrinkage and selection via the LASSO: a retrospective. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(3), 273–282 (2011)

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Wang, J., Song, W.: An algorithm twisted from generalized ADMM for multi-block separable convex minimization models. J. Comput. Appl. Math. 309, 342–358 (2017)

    MathSciNet  MATH  Google Scholar 

  48. 48.

    Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    MathSciNet  MATH  Google Scholar 

  49. 49.

    Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2(2), 569–592 (2009)

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Yang, J., Yuan, X.: Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301–329 (2012)

    MathSciNet  MATH  Google Scholar 

Download references


We would like to express our great appreciation to editors and anonymous referees for their valuable and constructive comments and suggestions on our manuscript. These comments are all valuable and very helpful for revising and improving our paper, as well as the important guiding significance to our researches. This work was supported by National Natural Science Foundation of China (No. 61877046).

Author information



Corresponding author

Correspondence to Zhao Deng.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Liu, S. Inertial generalized proximal Peaceman–Rachford splitting method for separable convex programming. Calcolo 58, 10 (2021).

Download citation


  • Convex programming
  • Peaceman–Rachford splitting method
  • Inertial proximal point
  • Indefinite
  • Variational inequality
  • Global convergence

Mathematics Subject Classification

  • 90C25
  • 90C30
  • 94A08