Abstract
The Peaceman–Rachford splitting method (PRSM) is a preferred method for solving the two-block separable convex minimization problems with linear constraints at present. In this paper, we propose an inertial generalized proximal PRSM (abbreviated as IGPRSM) to improve computing efficiency, which unify the ideas of inertial proximal point and linearization technique. Both subproblems are linearized by positive semi-definite proximal matrices, and we explain why the matrix cannot be indefinite. The global convergence and the worst-case asymptotic iteration complexity are derived theoretically via the variational inequality framework. Numerical experiments on LASSO, total variation (TV) based denoising models and image decomposition problems are presented to show the effectiveness of the introduced method even compared with the state-of-the-art methods.
This is a preview of subscription content, access via your institution.












References
- 1.
Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection–proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14(3), 773–782 (2004)
- 2.
Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9(1–2), 3–11 (2001)
- 3.
Bai, J., Li, J., Xu, F., Zhang, H.: Generalized symmetric ADMM for separable convex optimization. Comput. Optim. Appl. 70(1), 129–170 (2018)
- 4.
Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
- 5.
Boyd, S.P., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. Arch. 3(1), 1–122 (2011)
- 6.
Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal–dual algorithm. Math. Program. 159(1–2), 253–287 (2016)
- 7.
Chang, X., Liu, S., Zhao, P., Song, D.: A generalization of linearized alternating direction method of multipliers for solving two-block separable convex programming. J. Comput. Appl. Math. 357, 251–272 (2019)
- 8.
Chen, C., Chan, R.H., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8, 2239–2267 (2015)
- 9.
Chen, L., Sun, D., Toh, K.C.: An efficient inexact symmetric Gauss–Seidel based majorized ADMM for high-dimensional convex composite conic programming. Math. Program. 161(1), 237–270 (2017)
- 10.
Corman, E., Yuan, X.: A generalized proximal point algorithm and its convergence rate. SIAM J. Optim. 24(4), 1614–1638 (2014)
- 11.
Donoho, D.L., Tsaig, Y.: Fast solution of \(l_1\)-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)
- 12.
Dou, M., Li, H., Liu, X.: An inertial proximal Peaceman–Rachford splitting method. SCI. SIN. Math. 47(2), 333–348 (2017)
- 13.
Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)
- 14.
Eckstein, J.: Some saddle-function splitting methods for convex programming. Optim. Methods Softw. 4(1), 75–83 (1994)
- 15.
Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3), 293–318 (1992)
- 16.
Fazel, M., Pong, T., Sun, D., Tseng, P.: Hankel matrix rank minimization with applications to system identification and realization. SIAM J. Matrix Anal. Appl. 34(3), 946–977 (2013)
- 17.
Fortin, M., Glowinski, R.: Augmented Lagrangian Methods. North-Holland, Amsterdam (1983)
- 18.
Gabay, D.: Chapter IX applications of the method of multipliers to variational inequalities. Studies in Mathematics and Its Applications, vol 15, pp 299–331 (1983). https://doi.org/10.1016/S0168-2024(08)70034-1
- 19.
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)
- 20.
Gao, B., Ma, F.: Symmetric alternating direction method with indefinite proximal regularization for linearly constrained convex optimization. J. Optim. Theory Appl. 176(1), 178–204 (2018)
- 21.
Glowinski, R.: Lectures on Numerical Methods for Non-linear Variational Problems. Tata Institute of Fundamental Research, Springer, Bombay (1980)
- 22.
Glowinski, R., Marrocco, A.: Sur l’approximation, par elements finis d’ordre un, et la resolution, par penalisation-dualit’e, d’une classe de problems de Dirichlet non lineares. Ann. Stat. 9, 41–76 (1975)
- 23.
Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. Ser. A 141(1–2), 349–382 (2013)
- 24.
Gu, Y., Jiang, B., Han, D.: A semi-proximal-based strictly contractive Peaceman–Rachford splitting method. arXiv preprint arXiv:1506.02221 (2015)
- 25.
Han, D., Kong, W., Zhang, W.: A partial splitting augmented Lagrangian method for low patch-rank image decomposition. J. Math. Imaging Vis. 51(1), 145–160 (2015)
- 26.
Han, D., Yuan, X., Zhang, W., Cai, X.: An ADM-based splitting method for separable convex programming. Comput. Optim. Appl. 54(2), 343–369 (2013)
- 27.
He, B., Liu, H., Wang, Z., Yuan, X.: A strictly contractive Peaceman–Rachford splitting method for convex programming. SIAM J. Optim. 24(3), 1011–1040 (2014)
- 28.
He, B., Ma, F., Yuan, X.: Convergence study on the symmetric version of ADMM with larger step sizes. SIAM J. Imaging Sci. 9(3), 1467–1501 (2016)
- 29.
He, B., Ma, F., Yuan, X.: Optimal linearized alternating direction method of multipliers for convex programming. http://www.optimization-online.org (2017)
- 30.
He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22(2), 313–340 (2012)
- 31.
He, B., Yuan, X.: On the \(O(1/n)\) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)
- 32.
He, B., Yuan, X.: On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers. Numer. Math. 130(3), 567–577 (2015)
- 33.
He, Y., Li, H., Liu, X.: Relaxed inertial proximal Peaceman–Rachford splitting method for separable convex programming. Front. Math. China 13(3), 1–24 (2018)
- 34.
Jiang, F., Wu, Z., Cai, X.: Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization. J. Ind. Manag. Optim. 13(5), 1–22 (2017)
- 35.
Li, X., Sun, D., Toh, K.: A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Program. 155(1), 333–373 (2016)
- 36.
Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)
- 37.
Lorenz, D.A., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51(2), 311–325 (2015)
- 38.
Ma, S.: Alternating proximal gradient method for convex minimization. J. Sci. Comput. 68(2), 546–572 (2016)
- 39.
Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155(2), 447–454 (2003)
- 40.
Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73(4), 591–597 (1967)
- 41.
Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955)
- 42.
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenomena 60(1–4), 259–268 (1992)
- 43.
Sun, H., Tian, M., Sun, M.: The symmetric ADMM with indefinite proximal regularization and its application. J. Inequal. Appl. 2017(1), 172 (2017)
- 44.
Sun, M., Liu, J.: Generalized Peaceman–Rachford splitting method for separable convex programming with applications to image processing. J. Appl. Math. Comput. 51(1–2), 605–622 (2016)
- 45.
Sun, M., Wang, Y., Liu, J.: Generalized Peaceman–Rachford splitting method for multiple-block separable convex programming with applications to robust PCA. Calcolo 54(1), 77–94 (2017)
- 46.
Tibshirani, R.: Regression shrinkage and selection via the LASSO: a retrospective. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(3), 273–282 (2011)
- 47.
Wang, J., Song, W.: An algorithm twisted from generalized ADMM for multi-block separable convex minimization models. J. Comput. Appl. Math. 309, 342–358 (2017)
- 48.
Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)
- 49.
Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2(2), 569–592 (2009)
- 50.
Yang, J., Yuan, X.: Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301–329 (2012)
Acknowledgements
We would like to express our great appreciation to editors and anonymous referees for their valuable and constructive comments and suggestions on our manuscript. These comments are all valuable and very helpful for revising and improving our paper, as well as the important guiding significance to our researches. This work was supported by National Natural Science Foundation of China (No. 61877046).
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
No potential conflict of interest was reported by the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Deng, Z., Liu, S. Inertial generalized proximal Peaceman–Rachford splitting method for separable convex programming. Calcolo 58, 10 (2021). https://doi.org/10.1007/s10092-021-00399-5
Received:
Revised:
Accepted:
Published:
Keywords
- Convex programming
- Peaceman–Rachford splitting method
- Inertial proximal point
- Indefinite
- Variational inequality
- Global convergence
Mathematics Subject Classification
- 90C25
- 90C30
- 94A08