Abstract
For backward differentiation formulae (BDF) applied to gradient flows of semiconvex functions, quadratic stability implies the existence of a Lyapunov functional. We compute the maximum time step which can be derived from quadratic stability for the 3-step BDF method (BDF3). Applications to the asymptotic behaviour of sequences generated by the BDF3 scheme are given.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
- 1.
Absil, P.A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16(2), 531–547 (2005)
- 2.
Alaa, N.E., Pierre, M.: Convergence to equilibrium for discretized gradient-like systems with analytic features. IMA J. Numer. Anal. 33(4), 1291–1321 (2013)
- 3.
Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1–2, Ser. B), 5–16 (2009)
- 4.
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)
- 5.
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137(1–2, Ser. A), 91–129 (2013)
- 6.
Boţ, R.I., Csetnek, E.R., László, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions. EURO J. Comput. Optim. 4(1), 3–25 (2016)
- 7.
Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2006)
- 8.
Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)
- 9.
Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319–3363 (2010)
- 10.
Bouchriti, A., Pierre, M., Alaa, N.E.: Gradient stability of high-order BDF methods and some applications. J. Differ. Equ. Appl. 26(1), 74–103 (2020)
- 11.
Bouchriti, A., Pierre, M., Alaa, N.E.: Remarks on the asymptotic behaviour of scalar auxiliary variable (SAV) schemes for gradient-like flows. J. Appl. Anal. Comput. 10(5), 2198–2219 (2020)
- 12.
Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973)
- 13.
de Carvalho Bento, G., da Cruz Neto, J.A.X., Soubeyran, A., de Sousa Júnior, V.L.: Dual descent methods as tension reduction systems. J. Optim. Theory Appl. 171(1), 209–227 (2016)
- 14.
Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. Proc. Nat. Acad. Sci. USA 38, 235–243 (1952)
- 15.
Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 38. Springer-Verlag, Berlin (1998)
- 16.
Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations. I, Springer Series in Computational Mathematics, vol. 8, second edn. Springer, Berlin (1993)
- 17.
Haraux, A., Jendoubi, M.A.: The convergence problem for dissipative autonomous systems. SpringerBriefs in Mathematics. Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao (2015)
- 18.
Łojasiewicz, S.: Ensembles semi-analytiques. I.H.E.S. Notes (1965)
- 19.
Merlet, B., Pierre, M.: Convergence to equilibrium for the backward Euler scheme and applications. Commun. Pure Appl. Anal. 9(3), 685–702 (2010)
- 20.
Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998)
- 21.
Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis, Cambridge Monographs on Applied and Computational Mathematics, vol. 2. Cambridge University Press, Cambridge (1996)
Acknowledgements
The author is thankful to Frédéric Bosio, Anass Bouchriti and Nour Eddine Alaa for helpful discussions. The author also wishes to thank the anonymous referee for his valuable comments.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares that he has no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pierre, M. Maximum time step for the BDF3 scheme applied to gradient flows. Calcolo 58, 3 (2021). https://doi.org/10.1007/s10092-020-00393-3
Received:
Revised:
Accepted:
Published:
Keywords
- Gradient system
- BDF method
- Semiconvex function
- Kurdyka–Łojasiewicz property
- Multivalued dynamical system
Mathematics Subject Classification
- 65P40
- 65L04