Accurate computations with Wronskian matrices


In this paper we provide algorithms for computing the bidiagonal decomposition of the Wronskian matrices of the monomial basis of polynomials and of the basis of exponential polynomials. It is also shown that these algorithms can be used to perform accurately some algebraic computations with these Wronskian matrices, such as the calculation of their inverses, their eigenvalues or their singular values and the solutions of some linear systems. Numerical experiments illustrate the results.

This is a preview of subscription content, access via your institution.


  1. 1.

    Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Carnicer, J.M., Peña, J.M.: Shape preserving representations and optimality of the Bernstein basis. Adv. Comput. Math. 1, 173–196 (1993)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Delgado, J., Peña, J.M.: Accurate computations with collocation matrices of rational bases. Appl. Math. Comput. 219, 4354–4364 (2013)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Delgado, J., Peña, J.M.: Accurate computations with collocation matrices of q-Bernstein polynomials. SIAM J. Matrix Anal. Appl. 36, 880–893 (2015)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Demmel, J., Koev, P.: The accurate and efficient solution of a totally positive generalized Vandermonde linear system. SIAM J. Matrix Anal. Appl. 27, 42–52 (2005)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Fallat, S.M., Johnson, C.R.: Totally Nonnegative Matrices. Princeton University Press, Princeton (2011). Princeton Series in Applied Mathematics

    Google Scholar 

  7. 7.

    Gasca, M., Peña, J.M.: Total positivity and Neville elimination. Linear Algebra Appl. 165, 25–44 (1992)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Gasca, M., Peña, J.M.: A matricial description of Neville elimination with applications to total positivity. Linear Algebra Appl. 202, 33–53 (1994)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Gasca, M., Peña, J.M.: On factorizations of totally positive matrices. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and Its Applications, pp. 109–130. Kluver Academic Publishers, Dordrecht (1996)

    Google Scholar 

  10. 10.

    Koev, P.:

  11. 11.

    Koev, P.: Accurate eigenvalues and SVDs of totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 27, 1–23 (2005)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Koev, P.: Accurate computations with totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 29, 731–751 (2007)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Marco, A., Martínez, J.J.: A fast and accurate algorithm for solving Bernstein–Vandermonde linear systems. Linear Algebra Appl. 422, 616–628 (2007)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Marco, A., Martínez, J.J.: Accurate computations with Said–Ball–Vandermonde matrices. Linear Algebra Appl. 432, 2894–2908 (2010)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Marco, A., Martinez, J.J.: Accurate computation of the Moore–Penrose inverse of strictly totally positive matrices. J. Comput. Appl. Math. 350, 299–308 (2019)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Pinkus, A.: Totally Positive Matrices, Cambridge Tracts in Mathematics, 181. Cambridge University Press, Cambridge (2010)

    Google Scholar 

Download references


This work was partially supported through the Spanish research grant PGC2018-096321-B-I00 (MCIU/AEI), by Gobierno de Aragón (E41\(\_\)17R ) and by Feder 2014–2020 “Construyendo Europa desde Aragón”.

Author information



Corresponding author

Correspondence to B. Rubio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mainar, E., Peña, J.M. & Rubio, B. Accurate computations with Wronskian matrices. Calcolo 58, 1 (2021).

Download citation


  • Accurate computations
  • Wronskian matrices
  • Bidiagonal decompositions