Skip to main content
Log in

The virtual element method for a minimal surface problem

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Beirão da Veiga, L., Ern, A.: Preface [Special issue—Polyhedral discretization for PDE]. ESAIM Math. Model. Numer. Anal. 50(3), 633–634 (2016). https://doi.org/10.1051/m2an/2016034

    Article  MathSciNet  MATH  Google Scholar 

  2. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  3. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A \({\cal{C}} ^1\) virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016)

    Article  MathSciNet  Google Scholar 

  4. Gatica, G.N., Munar, M., Sequeira, F.A.: A mixed virtual element method for a nonlinear Brinkman model of porous media flow. Calcolo 55(2), 21 (2018). https://doi.org/10.1007/s10092-018-0262-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for quasi-Newtonian Stokes flows. SIAM J. Numer. Anal. 56(1), 317–343 (2018). https://doi.org/10.1137/17M1121160

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier–Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56(3), 1210–1242 (2018). https://doi.org/10.1137/17M1132811

    Article  MathSciNet  MATH  Google Scholar 

  7. Artioli, E., Beirão da Veiga, L., Lovadina, C., Sacco, E.: Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem. Comput. Mech. 60(4), 643–657 (2017). https://doi.org/10.1007/s00466-017-1429-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015). https://doi.org/10.1016/j.cma.2015.07.013

    Article  MathSciNet  MATH  Google Scholar 

  9. Cangiani, A., Chatzipantelidis, P., Diwan, G., Georgoulis, E.H.: Virtual element method for quasilinear elliptic problems. Tech. rep. arXiv:1707.01592 (2017)

  10. Wang, F., Wei, H.: Virtual element methods for the obstacle problem. IMA J. Numer. Anal. (2018). https://doi.org/10.1093/imanum/dry055

    Article  Google Scholar 

  11. Adak, D., Natarajan, S., Natarajan, E.: Virtual element method for semilinear elliptic problems on polygonal meshes. Appl. Numer. Math. 145, 175–187 (2019). https://doi.org/10.1016/j.apnum.2019.05.021

    Article  MathSciNet  MATH  Google Scholar 

  12. Adak, D., Natarajan, E., Kumar, S.: Virtual element method for semilinear hyperbolic problems on polygonal meshes. Int. J. Comput. Math. 96(5), 971–991 (2019). https://doi.org/10.1080/00207160.2018.1475651

    Article  MathSciNet  MATH  Google Scholar 

  13. Adak, D., Natarajan, E., Kumar, S.: Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 35(1), 222–245 (2019). https://doi.org/10.1002/num.22298

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, X., Chen, Z.: A virtual element method for the Cahn-Hilliard problem in mixed form. Appl. Math. Lett. 87, 115–124 (2019)

    Article  MathSciNet  Google Scholar 

  15. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978)

    Book  Google Scholar 

  16. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017). https://doi.org/10.1142/S021820251750052X

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson, C., Thomée, V.: Error estimates for a finite element approximation of a minimal surface. Math. Comput. 29, 343–349 (1975). https://doi.org/10.2307/2005555

    Article  MathSciNet  MATH  Google Scholar 

  18. Talischi, C., Paulino, G., Pereira, A., Menezes, I.: Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  Google Scholar 

  19. Kim, J., Chung, J.: Untangling polygonal and polyhedral meshes via mesh optimization. Eng. Comput. 31(3), 617–629 (2015). https://doi.org/10.1002/num.22298

    Article  Google Scholar 

  20. Concus, P.: Numerical solution of the minimal surface equation. Math. Comput. 21, 340–350 (1967). https://doi.org/10.2307/2003235

    Article  MathSciNet  MATH  Google Scholar 

  21. Nitsche, J.C.C.: On new results in the theory of minimal surfaces. Bull. Am. Math. Soc. 71, 195–270 (1965). https://doi.org/10.1090/S0002-9904-1965-11276-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Trasdahl, O., Ronquist, E.M.: High order numerical approximation of minimal surfaces. J. Comput. Phys. 230(12), 4795–4810 (2011). https://doi.org/10.1016/j.jcp.2011.03.003

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are members of the INdAM Research group GNCS and this work is partially funded by INDAM-GNCS. P.F.A. and M.V. acknowledge the financial support of MIUR thourgh the PRIN grant n. 201744KLJL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Prada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonietti, P.F., Bertoluzza, S., Prada, D. et al. The virtual element method for a minimal surface problem. Calcolo 57, 39 (2020). https://doi.org/10.1007/s10092-020-00388-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-020-00388-0

Keywords

Mathematics Subject Classification

Navigation