Skip to main content
Log in

Discrete projection methods for Hammerstein integral equations on the half-line

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, we study discrete projection methods for solving the Hammerstein integral equations on the half-line with a smooth kernel using piecewise polynomial basis functions. We show that discrete Galerkin/discrete collocation methods converge to the exact solution with order \({\mathcal {O}}(n^{-min\{r, d\}}),\) whereas iterated discrete Galerkin/iterated discrete collocation methods converge to the exact solution with order \({\mathcal {O}}(n^{-min\{2r, d\}}),\) where \(n^{-1}\) is the maximum norm of the graded mesh and r denotes the order of the piecewise polynomial employed and \(d-1\) is the degree of precision of quadrature formula. We also show that iterated discrete multi-Galerkin/iterated discrete multi-collocation methods converge to the exact solution with order \({\mathcal {O}}(n^{-min\{4r, d\}})\). Hence by choosing sufficiently accurate numerical quadrature rule, we show that the convergence rates in discrete projection and discrete multi-projection methods are preserved. Numerical examples are given to uphold the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allouch, C., Sbibih, D., Tahrichi, M.: Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations. J. Comput. Appl. Math. 353, 253–264 (2019)

    Article  MathSciNet  Google Scholar 

  2. Allouch, C., Sbibih, D., Tahrichi, M.: Numerical solutions of weakly singular Hammerstein integral equations. Appl. Math. Comput. 329, 118–128 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Allouch, C., Sbibih, D., Tahrichi, M.: Superconvergent Nyström and degenerate kernel methods for Hammerstein integral equations. J. Comput. Appl. Math. 258, 30–41 (2014)

    Article  MathSciNet  Google Scholar 

  4. Amini, S., Sloan, I.H.: Collocation methods for the second kind integral equations with non-compact operators. J. Integral Equ. Appl. 2, 1–30 (1989)

    Article  Google Scholar 

  5. Anselone, P.M., Lee, J.W.: Nonlinear integral equations on the half-line. J. Integral Equ. Appl. 4, 1–14 (1992)

    Article  MathSciNet  Google Scholar 

  6. Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half-line. The Wiener-Hopf case. University of NSW, Sydney (1988)

    MATH  Google Scholar 

  7. Assari, P.: The numerical solution of Fredholm-Hammerstein integral equations by combining the collocation method and radial basis functions. Filomat 33, 667–682 (2019)

    Article  MathSciNet  Google Scholar 

  8. Assari, P., Dehghan, M.: A meshless discrete Galerkin method based on the free shape parameter radial basis functions for solving Hammerstein integral equations. Numer. Math. Theory Methods Appl. 11, 540–568 (2018)

    Article  MathSciNet  Google Scholar 

  9. Assari, P.: A meshless local Galerkin method for the numerical solution of Hammerstein integral equations based on the moving least squares technique. J. Appl. Anal. Comput. 9, 75–104 (2019)

    MathSciNet  Google Scholar 

  10. Assari, P.: Thin plate spline Galerkin scheme for numerically solving nonlinear weakly singular Fredholm integral equations. Appl. Anal. 98, 2064–2084 (2019)

    Article  MathSciNet  Google Scholar 

  11. Assari, P., Asadi-Mehregan, F.: Local multiquadric scheme for solving two-dimensional weakly singular Hammerstein integral equations. Int. J. Numer. Model. Electron. Networks Devices Fields 32, e2488 (2019)

    Article  Google Scholar 

  12. Atkinson, K.E., Bogomolny, A.: The discrete Galerkin method for integral equations. Math. Comput. 48, 595–616 (1987)

    Article  MathSciNet  Google Scholar 

  13. Atkinson, K.E., Flores, J.: The discrete collocation method for nonlinear integral equations. IMA J. Numer. Anal. 13, 195–213 (1993)

    Article  MathSciNet  Google Scholar 

  14. Atkinson, K.E., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Integral Equ. Appl. 1, 17–54 (1988)

    Article  MathSciNet  Google Scholar 

  15. Browder, F. E.: Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type. Contributions to Nonlinear Functional Analysis, pp. 425–500 (1971)

  16. Chandler, G.A., Graham, I.G.: The convergence of Nyström methods for wiener-hopf equations. Numer. Math. 52, 345–364 (1987)

    Article  Google Scholar 

  17. Chen, Z., Long, G., Nelakanti, G.: The discrete multi-projection method for Fredholm integral equations of the second kind. J. Integral Equ. Appl. 19, 143–162 (2007)

    Article  MathSciNet  Google Scholar 

  18. Corduneanu, C.: Integral equations and stability of feedback systems. Academic Press Inc, Cambridge (1973)

    MATH  Google Scholar 

  19. Das, P., Nelakanti, G.: Error analysis of discrete legendre multi-projection methods for nonlinear Fredholm integral equations. Numer. Funct. Anal. Optim. 38, 549–574 (2017)

    Article  MathSciNet  Google Scholar 

  20. Das, P., Nelakanti, G.: Discrete legendre spectral Galerkin method for Urysohn integral equations. Int. J. Comput. Math. 95, 465–489 (2018)

    Article  MathSciNet  Google Scholar 

  21. Das, P., Nelakanti, G., Long, G.: Discrete Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Comput. Appl. Math. 278, 293–305 (2015)

    Article  MathSciNet  Google Scholar 

  22. Das, P., Nelakanti, G.: Superconvergence results for the iterated discrete legendre Galerkin method for Hammerstein integral equations. J. Comput. Sci. Comput. Math. 5, 75–83 (2015)

    Article  Google Scholar 

  23. Eggermont, P.P.B.: On noncompact Hammerstein integral equations and a nonlinear boundary value problem for the heat equation. J. Integral Equ. Appl. 4, 47–68 (1992)

    Article  MathSciNet  Google Scholar 

  24. Finn, G.: Studies in spectral line formation: I. formulation and simple applications. J. Quant. Spectrosc. Radiat. Transfer 8, 1675–1703 (1968)

    Article  Google Scholar 

  25. Ganesh, M., Joshi, M.: Numerical solutions of nonlinear integral equations on the half-line. Numer. Funct. Anal. Optim. 10, 1115–1138 (1989)

    Article  MathSciNet  Google Scholar 

  26. Graham, I.G., Mendes, W.R.: Nyström-product integration for wiener-hopf equations with applications to radiative transfer. IMA J. Numer. Anal. 9, 261–284 (1989)

    Article  MathSciNet  Google Scholar 

  27. Guenther, R.B., Lee, J.W., O’Regan, D.: Boundary value problems on infinite intervals and semiconductor devices. J. Math. Anal. Appl. 116, 335–348 (1986)

    Article  MathSciNet  Google Scholar 

  28. Golberg, M.A., Chen, C.S.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Southampton (1997)

    MATH  Google Scholar 

  29. Golberg, M., Bowman, H.: Optimal convergence rates for some discrete projection methods. Appl. Math. Comput. 96, 237–271 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Kaneko, H., Noren, R., Padilla, P.: Superconvergence of the iterated collocation methods for Hammerstein equations. J. Comput. Appl. Math. 80, 335–349 (1997)

    Article  MathSciNet  Google Scholar 

  31. Kumar, S.: A discrete collocation-type method for Hammerstein equations. SIAM J. Numer. Anal. 25, 328–341 (1988)

    Article  MathSciNet  Google Scholar 

  32. Kulkarni, R.P., Gnaneshwar, N.: Iterated discrete polynomially based Galerkin methods. Appl. Math. Comput. 146, 153–165 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Moré, J.J., Cosnard, M.Y.: Algorithm 554: Brentm, a fortran subroutine for the numerical solution of nonlinear equations [c5]. Trans. Math. Softw. (TOMS) 6, 240–251 (1980)

    Article  Google Scholar 

  34. Michael, G.: Improved convergence rates for some discrete Galerkin methods. J. Integral Equ. Appl. 8, 307–335 (1996)

    Article  MathSciNet  Google Scholar 

  35. Nahid, N., Das, P., Nelakanti, G.: Projection and multi projection methods for nonlinear integral equations on the half-line. J. Comput. Appl. Math. 359, 119–144 (2019)

    Article  MathSciNet  Google Scholar 

  36. Noble, B.: Certain dual integral equations. Stud. Appl. Math. 37, 128–136 (1958)

    MathSciNet  MATH  Google Scholar 

  37. Vainikko, G.M.: Galerkin’s perturbation method and the general theory of approximate methods for nonlinear equations. USSR Comput. Math. Math. Phys. 7, 1–41 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilofar Nahid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahid, N., Nelakanti, G. Discrete projection methods for Hammerstein integral equations on the half-line. Calcolo 57, 37 (2020). https://doi.org/10.1007/s10092-020-00386-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-020-00386-2

Keywords

Mathematics Subject Classification

Navigation