Skip to main content
Log in

A new stable numerical method for Mellin integral equations in weighted spaces with uniform norm

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper a new modified Nyström method is proposed to solve linear integral equations of the second kind with fixed singularities of Mellin convolution type. It is based on the Gauss–Radau quadrature formula with a suitable Jacobi weight. The stability and convergence of the method is proved in weighted spaces with uniform norm. Moreover, an error estimate of the numerical solution is given under certain assumptions on the Mellin kernel. The efficiency of the method is shown through some examples. The numerical results also confirm that the error estimate is sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind, Cambridge Monographs on Applied and Computational Mathematics, vol. 552. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  2. De Bonis, M.C., Laurita, C.: A modified Nyström method for integral equations with Mellin type kernels. J. Comp. Appl. Math. 296, 512–527 (2016)

    Article  Google Scholar 

  3. De Bonis, M.C., Laurita, C.: A Nyström method for integral equations with fixed singularities of Mellin type in weighted \({L}^p\) spaces. Appl. Math. Comput. 303, 55–69 (2017)

    MathSciNet  MATH  Google Scholar 

  4. De Bonis, M.C., Laurita, C.: On the stability of a modified Nyström method for Mellin convolution equations in weighted spaces. Numer. Algorithms 79, 611–631 (2018)

    Article  MathSciNet  Google Scholar 

  5. Elliott, D., Prössdorf, S.: An algorithm for the approximate solution of integral equations of Mellin type. Numer. Math. 70, 427–452 (1995)

    Article  MathSciNet  Google Scholar 

  6. Elschner, J.: On spline approximation for a class of non-compact integral equations. Math. Nachr. 146, 271–321 (1990)

    Article  MathSciNet  Google Scholar 

  7. Elschner, J.: The \(h-p-\)version of spline approximation methods for Mellin convolution equations. J. Integr. Eq. Appl. 5, 47–73 (1993)

    Article  MathSciNet  Google Scholar 

  8. Elschner, J., Graham, I.G.: Numerical methods for integral equations of Mellin type. J. Comp. Appl. Math. 125, 423–437 (2000)

    Article  MathSciNet  Google Scholar 

  9. Kress, R.: Linear Integral Equations, Applied Mathematical Sciences, vol. 82. Springer, Berlin (1989)

    Book  Google Scholar 

  10. Kress, R.: A Nyström method for boundary integral equations in domains with corners. Numer. Math. 58, 445–461 (1990)

    Article  Google Scholar 

  11. Laurita, C.: A numerical method for the solution of integral equations of Mellin type. Appl. Numer. Math. 116, 215–229 (2017)

    Article  MathSciNet  Google Scholar 

  12. Mastroianni, G., Milovanovic, G.V.: Interpolation Processes Basic Theory and Applications. Springer Monographs in Mathematics. Springer, Berlin (2009)

    Google Scholar 

  13. Mastroianni, G., Monegato, G.: Nyström interpolants based on the zeros of Legendre polynomials for a non-compact integral operator equation. IMA J. Numer. Anal. 14, 81–95 (1993)

    Article  Google Scholar 

  14. Mastroianni, G., Russo, M.G.: Lagrange interpolation in weighted Besov spaces. Constr. Approx. 15, 257–289 (1999)

    Article  MathSciNet  Google Scholar 

  15. Monegato, G.: A stable Nyström interpolant for some Mellin convolution equations. Numer. Algorithms 11, 271–283 (1996)

    Article  MathSciNet  Google Scholar 

  16. Nevai, G.P.: Mean convergence of Lagrange interpolation. I. J. Approx. Theory 18, 363–377 (1976)

    Article  MathSciNet  Google Scholar 

  17. Nevai, G.P.: Orthogonal Polynomials. American Mathematical Society, Providence, R.I. (1979)

    MATH  Google Scholar 

  18. Nevai, G.P.: Mean convergence of Lagrange interpolation. III. Trans. Am. Math. Soc. 282, 669–698 (1984)

    Article  MathSciNet  Google Scholar 

  19. Szegő, G.: Orthogonal polynomials, American Mathematical Society Colloquium Publications, vol. 23, 4th edn. American Mathematical Society, Providence (1975)

    Google Scholar 

Download references

Acknowledgements

The author is partially supported by INdAM-GNCS 2019 project “Discretizzazione di misure, approssimazione di operatori integrali ed applicazioni” and by University of Basilicata (local funds). The author is member of the INdAM Research group GNCS. This research has been accomplished within the RITA “Research ITalian network on Approximation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concetta Laurita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section we will give some estimates for the quadrature error of the Gauss–Radau formula with respect to a Jacobi weight \(v^{\alpha ,\beta }(x)\), \(\alpha ,\beta >-1\),

$$\begin{aligned} \int _0^1 F(x)v^{\alpha ,\beta }(x)dx=\sum _{i=1}^n\lambda _{n,i}F(x_{n,i})+e_n(F). \end{aligned}$$
(41)

Now, we recall some useful notation and definitions.

For a function \(F \in C\), by \(E_n(F)_{\infty }\) we denote the error of best polynomial approximation

$$\begin{aligned} E_n(F)_{\infty }=\inf _{P_n \in \mathbb {P}_n}\Vert F-P_n\Vert _{\infty }, \end{aligned}$$

where \(\mathbb {P}_n\) is the set of all algebraic polynomials on [0, 1] of degree at most n.

Taking into account that the algebraic degree of exactness of the formula (41) is \(2n-2\), by classical arguments (see, for instance, [12, Theorem 5.1.6]) it can be proved the following

Theorem 8

For any \(F \in C\), the estimate

$$\begin{aligned} |e_n(F)| \le 2 \left( \int _0^1 v^{\alpha ,\beta }(x)\,dx\right) E_{2n-2}(F)_{\infty } \end{aligned}$$
(42)

holds true.

For a general weight function w(x) on [0, 1] and \(1\le p<+\infty \), we denote by \(L^p_{w}\), the weighted space of all real-valued measurable functions F on [0, 1] such that

$$\begin{aligned} \Vert F\Vert _{L^p_{w}}=\Vert w F\Vert _p=\left( \int _{0}^1 |w(x) F(x)|^pdx\right) ^\frac{1}{p}<+\infty . \end{aligned}$$

Moreover, we consider the following weighted Sobolev type subspaces of \(L^p_{w}\)

$$\begin{aligned} W_r^p(w)=\left\{ F \in L^p_{w} : \ F^{(r-1)}\in AC(0,1), \ \Vert w F^{(r)}\varphi ^r\Vert _p<+\infty \right\} , \end{aligned}$$

where r is a positive integer, \(\varphi (x)=\sqrt{x(1-x)}\) and AC(0, 1) denotes the collection of all functions which are absolutely continuous on every closed subset of (0, 1), endowed with the norm

$$\begin{aligned} \Vert F\Vert _{W_r^p(w)}=\Vert w F\Vert _p+\Vert w F^{(r)}\varphi ^r\Vert _p. \end{aligned}$$

Let us denote by

$$\begin{aligned} E_n(F)_{w,p}=\inf _{P\in \mathbb {P}_n}\Vert w (F-P)\Vert _p \end{aligned}$$

the error of weighted best approximation of the function \(F\in L^p_{w}\) by means of polynomials of degree at most n. For functions F belonging to \(W_r^p(w)\), the following Favard inequality

$$\begin{aligned} E_n(F)_{w,p}\le \frac{{{\mathcal {C}}}}{n}E_{n-1}(F')_{\varphi w,p}, \end{aligned}$$
(43)

holds true for a constant \({{\mathcal {C}}}\ne {{\mathcal {C}}}(n,F)\) (see, for example, [12, (2.5.22), p. 172]). Iterating this inequality, one gets the estimate

$$\begin{aligned} E_n(F)_{w,p}\le \frac{{{\mathcal {C}}}}{n^r} E_{n-r}(F^{(r)})_{\varphi ^r w,p}. \end{aligned}$$

We need the following auxiliary result.

Lemma 3

The knots and weights of the quadrature formula (41) satisfy the following conditions

$$\begin{aligned} \lambda _{n,i} \sim \left\{ \begin{array}{ll} \displaystyle \varDelta x_{n,i} \, v^{\alpha ,\beta }(x_{n,i}), &{} \quad i=2,\ldots ,n-1 \\ \displaystyle \varDelta x_{n,i-1} \, v^{\alpha ,\beta }(x_{n,i}), &{} \quad i=n \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} \lambda _{n,1} \displaystyle \le {{\mathcal {C}}}\, \varDelta x_{n,1}v^{\alpha ,\beta }(x_{n,2}), \end{aligned}$$
(44)

where \(\varDelta x_{n,i}=x_{n,i+1}-x_{n,i}\), \(i=1,\ldots ,n-1\) and \({{\mathcal {C}}}\ne {{\mathcal {C}}}(n)\).

Proof

We recall that the nodes of the quadrature rule (41) are \(x_{n,1}=0\) and \(x_{n,2},\ldots ,x_{n,n}\) the zeros of the Jacobi polynomial

$$\begin{aligned} p_{n-1}^{\alpha ,\beta +1}(x)=\gamma _{n-1}^{\alpha ,\beta +1}x^{n-1}+\mathrm {lower \, degree \, terms}, \quad \gamma _{n-1}^{\alpha ,\beta +1}>0, \end{aligned}$$

orthonormal with respect to the weight \(v^{\alpha ,\beta +1}(x)=(1-x)^{\alpha }x^{\beta +1}\) on the interval [0, 1]. Denoting by \(l_{n,i}(x)\), \(i=1,\ldots ,n\), the fundamental Lagrange polynomials based on the system of knots \(\{x_{n,1},\ldots ,x_{n,n} \}\), for the coefficients of the quadrature formula (41) we can write

$$\begin{aligned} \lambda _{n,i}=\int _0^1 l_{n,i}(x)v^{\alpha ,\beta }(x)dx, \qquad i=1,\ldots ,n. \end{aligned}$$

Taking into account that

$$\begin{aligned} l_{n,i}(x)=\left\{ \begin{array}{ll}\displaystyle \frac{p_{n-1}^{\alpha ,\beta +1}(x)}{p_{n-1}^{\alpha ,\beta +1}(x_{n,1})}, &{} \quad i=1 \\ \displaystyle \frac{xp_{n-1}^{\alpha ,\beta +1}(x)}{x_{n,i}(x-x_{n,i})(p_{n-1}^{\alpha ,\beta +1})'(x_{n,i})}, &{} \quad i=2,\ldots ,n, \end{array} \right. \end{aligned}$$

we have

$$\begin{aligned} \lambda _{n,1}=\int _0^1 \frac{p_{n-1}^{\alpha ,\beta +1}(x)}{p_{n-1}^{\alpha ,\beta +1}(x_{n,1})}v^{\alpha ,\beta }(x) dx = \int _0^1 \left[ \frac{p_{n-1}^{\alpha ,\beta +1}(x)}{p_{n-1}^{\alpha ,\beta +1}(x_{n,1})}\right] ^2v^{\alpha ,\beta }(x) dx \end{aligned}$$
(45)

and

$$\begin{aligned} \lambda _{n,i}=\frac{1}{x_{n,i}}\int _0^1 \frac{p_{n-1}^{\alpha ,\beta +1}(x)}{(x-x_{n,i})(p_{n-1}^{\alpha ,\beta +1})'(x_{n,i})}v^{\alpha ,\beta +1}(x)dx, \qquad i=2,\ldots ,n. \end{aligned}$$

Then, for \(i=2,\ldots ,n-1\), one has that (see [16])

$$\begin{aligned} \lambda _{n,i} \sim \frac{1}{x_{n,i}}\frac{\sqrt{1-x^2}}{n} v^{\alpha ,\beta +1}(x), \qquad x_{n,i} \le x \le x_{n,i+1} \end{aligned}$$

from which, since

$$\begin{aligned} x_{n,i} \sim x \sim x_{n,i+1}, \quad \mathrm {and} \quad 1+x_{n,i} \sim 1 + x \sim 1 + x_{n,i+1}, \qquad x_{n,i} \le x \le x_{n,i+1} \end{aligned}$$
(46)

and

$$\begin{aligned} \varDelta x_{n,i}=x_{n,i+1}-x_{n,i} \sim \frac{\sqrt{1-x^2}}{n}, \qquad x_{n,i} \le x \le x_{n,i+1} \end{aligned}$$
(47)

(see, for instance, [12]), we have

$$\begin{aligned} \lambda _{n,i} \sim \left\{ \begin{array}{ll} \displaystyle \frac{1}{x_{n,i}}\frac{\sqrt{1-x_{n,i}^2}}{n} v^{\alpha ,\beta +1}(x_{n,i}) \sim \varDelta x_{n,i} v^{\alpha ,\beta }(x_{n,i}) &{} \quad i=2,\ldots ,n-1 \\ \displaystyle \frac{1}{x_{n,i}}\frac{\sqrt{1-x_{n,i-1}^2}}{n} v^{\alpha ,\beta +1}(x_{n,i})\sim \varDelta x_{n,i-1}v^{\alpha ,\beta }(x_{n,i}) &{} \quad i=n.\end{array} \right. \end{aligned}$$

It remains to prove (44). To this end, starting from (45), we rewrite the coefficient \(\lambda _{n,1}\) as

$$\begin{aligned} \lambda _{n,1}=\left[ \frac{\left( p_{n-1}^{\alpha ,\beta +1}\right) '(x_{n,2})}{p_{n-1}^{\alpha ,\beta +1}(x_{n,1})}\right] ^2 \int _0^1 \frac{\left[ p_{n-1}^{\alpha ,\beta +1}(x)\right] ^2}{\left[ (x-x_{n,2}) \left( p_{n-1}^{\alpha ,\beta +1}\right) '(x_{n,2})\right] ^2}\frac{(x-x_{n,2})^2}{x}v^{\alpha ,\beta +1}(x)dx. \end{aligned}$$
(48)

In what follows we will denote by \(x_{n-1,i}^{\alpha ,\beta +1}\) and \(\lambda _{n-1,i}^{\alpha ,\beta +1}\), \(i=1,\ldots ,n-1\), the nodes and coefficients of the \((n-1)\)–point Gaussian quadrature formula on [0, 1] w.r.t. the weight \(v^{\alpha ,\beta +1}(x)\). According to this notation, it is \(x_{n,2}=x_{n-1,1}^{\alpha ,\beta +1}\).

From (48), being \(\frac{(x-x_{n,2})^2}{x} \le {{\mathcal {C}}}\) (also in virtue of (46)), we can deduce that (see, for instance, [17, p. 170])

$$\begin{aligned} \lambda _{n,1} &\le {{\mathcal {C}}}\;\left[ \frac{\left( p_{n-1}^{\alpha ,\beta +1}\right) '(x_{n-1,1}^{\alpha ,\beta +1})}{p_{n-1}^{\alpha ,\beta +1}(0)}\right] ^2 \lambda _{n-1,1}^{\alpha ,\beta +1}\\ &=\, \frac{{{\mathcal {C}}}}{\left[ p_{n-1}^{\alpha ,\beta +1}(0)\right] ^2}\left( \frac{\gamma _{n-1}^{\alpha ,\beta +1}}{\gamma _{n-2}^{\alpha ,\beta +1}}\right) ^2 \frac{1}{\lambda _{n-1,1}^{\alpha ,\beta +1}\left[ p_{n-2}^{\alpha ,\beta +1}(x_{n-1,1}^{\alpha ,\beta +1}) \right] ^2}. \end{aligned}$$

Now, since (see [19, (12.7.2), p. 309], [17, Theorem 9.33 p. 171], [18, (14) and (18), p. 673-674], [12, (4.2.30), p. 255])

$$\begin{aligned} \frac{\gamma _{n-1}^{\alpha ,\beta +1}}{\gamma _{n-2}^{\alpha ,\beta +1}} \sim 1, \quad \left| p_{n-1}^{\alpha ,\beta +1}(0)\right| \sim n^{\beta +\frac{3}{2}}, \quad \lambda _{n-1,1}^{\alpha ,\beta +1} \sim \frac{1}{n^{2\beta +4}}, \quad \left| p_{n-2}^{\alpha ,\beta +1}(x_{n-1,1}^{\alpha ,\beta +1})\right| \sim n^{\beta +\frac{3}{2}} \end{aligned}$$

we get

$$\begin{aligned} \lambda _{n,1} \le {{\mathcal {C}}}\frac{1}{n^{2\beta +2}}. \end{aligned}$$
(49)

On the other hand, it can be easily seen that

$$\begin{aligned} \varDelta x_{n,1}v^{\alpha ,\beta }(x_{n,2}) \sim \frac{1}{n^{2\beta +2}}, \end{aligned}$$
(50)

hence, combining (49) with (50) we get (44) and the proof is complete. \(\square \)

Theorem 9

Let\(F \in W_r^1(v^{\alpha ,\beta })\), \(r\ge 1\). Then

$$\begin{aligned} |e_n(F)| \le \frac{{{\mathcal {C}}}}{n^r}E_{2n-2-r}(F^{(r)})_{\varphi ^r v^{\alpha ,\beta },1} \end{aligned}$$
(51)

where \({{\mathcal {C}}}\ne {{\mathcal {C}}}(n,F)\).

Proof

We first prove (51) when \(r=1\). To this aim, we start showing the following inequality

$$\begin{aligned} \sum _{i=1}^n\lambda _{n,i}|F(x_{n,i})| \le {{\mathcal {C}}}\Vert Fv^{\alpha ,\beta }\Vert _1+\frac{{{\mathcal {C}}}}{n}\int _0^1|F'(x)|\varphi (x)v^{\alpha ,\beta }(x)dx. \end{aligned}$$
(52)

In virtue of Lemma 3 we can write

$$\begin{aligned} \sum _{i=1}^n\lambda _{n,i}|F(x_{n,i})| &\le {} {{\mathcal {C}}}\left[ \varDelta x_{n,1}v^{\alpha ,\beta }(x_{n,2})|F(x_{n,1})|+\sum _{i=2}^{n-1}\varDelta x_{n,i}v^{\alpha ,\beta }(x_{n,i})|F(x_{n,i})| \right. \\&+\, \left. \varDelta x_{n,n-1} \, v^{\alpha ,\beta }(x_{n,n})|F(x_{n,n})|\right] \end{aligned}$$

from which, using the inequality

$$\begin{aligned} \left. \begin{array}{l} (b-a)|F(a)|\\ (b-a)|F(b)|\end{array}\right\} \le \int _a^b |F(x)|dx+(b-a)\int _a^b |F'(x)|dx, \end{aligned}$$

we get

$$\begin{aligned} \sum _{i=1}^n\lambda _{n,i}|F(x_{n,i})| &\le {{\mathcal {C}}} \left[ v^{\alpha ,\beta }(x_{n,2})\int _{x_{n,1}}^{x_{n,2}}|F(x)|dx+v^{\alpha ,\beta }(x_{n,2})\varDelta x_{n,1} \int _{x_{n,1}}^{x_{n,2}}|F'(x)|dx\right. \\&+ \left. \sum _{i=2}^{n-1}\left( v^{\alpha ,\beta }(x_{n,i})\int _{x_{n,i}}^{x_{n,i+1}}|F(x)|dx+v^{\alpha ,\beta }(x_{n,i})\varDelta x_{n,i} \int _{x_{n,i}}^{x_{n,i+1}}|F'(x)|dx \right) \right. \\&+ \left. v^{\alpha ,\beta }(x_{n,n})\int _{x_{n,n-1}}^{x_{n,n}}|F(x)|dx+v^{\alpha ,\beta }(x_{n,n})\varDelta x_{n,n-1} \int _{x_{n,n-1}}^{x_{n,n}}|F'(x)|dx\right] . \end{aligned}$$

Now, taking into account (46) and (47), we obtain

$$\begin{aligned} \sum _{i=1}^n\lambda _{n,i}|F(x_{n,i})| &\le {{\mathcal {C}}}\left[ \int _{x_{n,1}}^{x_{n,n}}|F(x)|v^{\alpha ,\beta }(x)dx + \frac{1}{n}\int _{x_{n,1}}^{x_{n,n}}|F'(x)|\varphi (x)v^{\alpha ,\beta }(x)dx\right] \\&\le {{\mathcal {C}}}\left[ \int _{0}^{1}|F(x)|v^{\alpha ,\beta }(x)dx+ \frac{1}{n}\int _{0}^{1}|F'(x)|\varphi (x)v^{\alpha ,\beta }(x)dx\right] \end{aligned}$$

i.e. (52). From (52), being the algebraic degree of the exactness of the formula (41) equal to \(2n-2\), for each polynomial \(P \in \mathbb {P}_{2n-2}\) we can write

$$\begin{aligned} |e_n(F)| &= \left| \int _0^1[F(x)-P(x)]v^{\alpha ,\beta }(x)dx+\sum _{i=1}^n\lambda _{n,i}[F(x_{n,i})-P(x_{n,i})]\right| \\ &\le \Vert v^{\alpha ,\beta }(F-P)\Vert _1+\sum _{i=1}^n\lambda _{n,i}|F(x_{n,i})-P(x_{n,i})| \\ & \le {{\mathcal {C}}}\Vert v^{\alpha ,\beta }(F-P)\Vert _1+ \frac{{{\mathcal {C}}}}{n}\Vert v^{\alpha ,\beta }(F-P)'\varphi \Vert _1. \end{aligned}$$

Then, since (see, for instance, [12, 14])

$$\begin{aligned} \Vert v^{\alpha ,\beta }(F-P)'\varphi \Vert _1 \le {{\mathcal {C}}}(2n-1) \Vert v^{\alpha ,\beta }(F-P)\Vert _1 + {{\mathcal {C}}}_1 E_{2n-3}(F')_{\varphi v^{\alpha ,\beta },1}, \end{aligned}$$

we have

$$\begin{aligned} |e_n(F)| \le {{\mathcal {C}}}\Vert v^{\alpha ,\beta }(F-P)\Vert _1+ \frac{{{\mathcal {C}}}_1}{n}E_{2n-3}(F')_{\varphi v^{\alpha ,\beta },1}. \end{aligned}$$

Now, taking the infimum over \(P \in \mathbb {P}_{2n-2}\) and using the Favard inequality (43),

$$\begin{aligned} |e_n(F)| &\le {{\mathcal {C}}}E_{2n-2}(F)_{v^{\alpha ,\beta },1}+\frac{{{\mathcal {C}}}_1}{n}E_{2n-3}(F')_{\varphi v^{\alpha ,\beta },1} \\&\le \frac{{{\mathcal {C}}}}{n} E_{2n-3}(F')_{\varphi v^{\alpha ,\beta },1}. \end{aligned}$$

Iterating the Favarde inequality, we get the estimate (51). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurita, C. A new stable numerical method for Mellin integral equations in weighted spaces with uniform norm. Calcolo 57, 25 (2020). https://doi.org/10.1007/s10092-020-00374-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-020-00374-6

Keywords

Mathematics Subject Classification

Navigation