Skip to main content
Log in

Tseng type methods for solving inclusion problems and its applications

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, we introduce two modifications of the forward–backward splitting method with a new step size rule for inclusion problems in real Hilbert spaces. The modifications are based on Mann and viscosity-ideas. Under standard assumptions, such as Lipschitz continuity and monotonicity (also maximal monotonicity), we establish strong convergence of the proposed algorithms. We present two numerical examples, the first in infinite dimensional spaces, which illustrates mainly the strong convergence property of the algorithm. For the second example, we illustrate the performances of our scheme, compared with the classical forward–backward splitting method for the problem of recovering a sparse noisy signal. Our result extend some related works in the literature and the primary experiments might also suggest their potential applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Attouch, H., Peypouquet, J., Redont, P.: Backward–forward algorithms for structured monotone inclusions in Hilbert spaces. J. Math. Anal. Appl. 457, 1095–1117 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)

    Book  Google Scholar 

  3. Brézis, H., Chapitre, I.I.: Operateurs maximaux monotones. North-Holland Math. Stud. 5, 19–51 (1973)

    Article  Google Scholar 

  4. Bruck, R.: On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space. J. Math. Anal. Appl. 61, 159–164 (1977)

    Article  MathSciNet  Google Scholar 

  5. Chen, H.G., Rockafellar, R.T.: Convergence rates in forward–backward splitting. SIAM J. Optim. 7, 421–444 (1997)

    Article  MathSciNet  Google Scholar 

  6. Chen, S., Donoho, D.L., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  7. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics 2057. Springer, Berlin (2012)

    Google Scholar 

  8. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  9. Combettes, P.L., Wajs, V.: Signal recovery by proximal forward–backward splitting. SIAM Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  10. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  11. Dong, Q., Jiang, D., Cholamjiak, P., Shehu, Y.: A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions. J. Fixed Point Theory Appl. 19, 3097–3118 (2017)

    Article  MathSciNet  Google Scholar 

  12. Dong, Y.D., Fischer, A.: A family of operator splitting methods revisited. Nonlinear Anal. 72, 4307–4315 (2010)

    Article  MathSciNet  Google Scholar 

  13. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the \(l_1\)-ball for learning in high dimensions. In: Proceedings of the 25 th International Conference on Machine Learning, Helsinki, Finland (2008)

  14. Duchi, J., Singer, Y.: Efficient online and batch learning using forward–backward splitting. J. Mach. Learn. Res. 10, 2899–2934 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  16. Goldstein, A.A.: Convex programming in Hilbert spaces. Bull. Am. Math. Soc. 70, 709–710 (1964)

    Article  MathSciNet  Google Scholar 

  17. Huang, Y.Y., Dong, Y.D.: New properties of forward-backward splitting and a practical proximal-descent algorithm. Appl. Math. Comput. 237, 60–68 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  Google Scholar 

  19. Maingé, F.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)

    Article  MathSciNet  Google Scholar 

  20. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  Google Scholar 

  21. Moudafi, A.: Viscosity approximating methods for fixed point problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MathSciNet  Google Scholar 

  22. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MathSciNet  Google Scholar 

  23. Raguet, H., Fadili, J., Peyré, G.: A generalized forward–backward splitting. SIAM J. Imaging Sci. 6, 1199–1226 (2013)

    Article  MathSciNet  Google Scholar 

  24. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14, 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  25. Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  26. Tibshirami, R.: Regression shrinkage and selection via lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)

    MathSciNet  Google Scholar 

  27. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  28. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their comments on the manuscript which helped in improving earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Viet Thong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibali, A., Thong, D.V. Tseng type methods for solving inclusion problems and its applications. Calcolo 55, 49 (2018). https://doi.org/10.1007/s10092-018-0292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0292-1

Keywords

Mathematics Subject Classification

Navigation