Skip to main content
Log in

A stable space–time finite element method for parabolic evolution problems

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

This paper is concerned with the analysis of a new stable space–time finite element method (FEM) for the numerical solution of parabolic evolution problems in moving spatial computational domains. The discrete bilinear form is elliptic on the FEM space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the FEM spaces yield an a priori discretization error estimate with respect to the discrete norm. Finally, we confirm the theoretical results with numerical experiments in spatial moving domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Babuška, I., Janik, T.: The \(h\)-\(p\) version of the finite element method for parabolic equations. I. The \(p\)-version in time. Numer. Methods Partial Differ. Equ. 5(4), 363–399 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Janik, T.: The \(h\)-\(p\) version of the finite element method for parabolic equations. II. The \(h\)-\(p\) version in time. Numer. Methods Partial Differ. Equ. 6(4), 343–369 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bank, R.E., Vassilevski, P.S., Zikatanov, L.T.: Arbitrary dimension convectiondiffusion schemes for spacetime discretizations. J. Comput. Appl. Math. 310, 19–31 (2017). Numerical Algorithms for Scientific and Engineering Applications

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, Berlin (2008)

    Book  Google Scholar 

  5. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Hughes, T.J.R., Hulbert, G.M.: Space–time finite element methods for elastodynamics: formulations and error estimates. Comput. Methods Appl. Mech. Eng. 66(3), 339–363 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Dover Publications, Inc., Mineola (2009). Reprint of the 1987 edition

    MATH  Google Scholar 

  8. Ladyzhenskaya, O.A., Solonnikov, V.A., Uraltseva, N.N.: Linear and quasilinear equations of parabolic type. Nauka, Moscow, 1967. In: Russian. Translated in AMS, Providence, RI (1968)

  9. Langer, U., Matculevich, S., Repin, S.: A posteriori error estimates for space–time iga approximations to parabolic initial boundary value problems. arxiv, (2017-14). arXiv:1612.08998

  10. Langer, U., Moore, S.E., Neumüller, M.: Space-time isogeometric analysis of parabolic evolution equations. Comput. Methods Appl. Mech. Eng. 306, 342–363 (2016)

    Article  Google Scholar 

  11. Moore, S.E.: Nonstandard Discretization Strategies in Isogeometric Analysis for Partial Differential Equations. PhD thesis, Johannes Kepler University (2017)

  12. Moore, S.E.: Space–time multipatch discontinuous galerkin isogeometric analysis for parabolic evolution problem. arxiv (2017)

  13. Neumüller, M.: Space–time methods: fast solvers and applications, volume 20 of monographic series TU Graz: Computation in Engineering and Science. TU Graz (2013)

  14. Schötzau, D., Schwab, C.: An hp a priori error analysis of the dg time-stepping method for initial value problems. Calcolo 37(4), 207–232 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schwab, C., Stevenson, R.: Space–time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78, 1293–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Steinbach, O.: Space–time finite element methods for parabolic problems. Comput. Meth. Appl. Math. 15(4), 551–566 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: the concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94(3), 339–351 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94(3), 353–371 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics). Springer, New York, Secaucus (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

The author appreciates the constructive comments from the reviewer which helped improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Edward Moore.

Additional information

In loving memory of Professor Francis Allotey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, S.E. A stable space–time finite element method for parabolic evolution problems. Calcolo 55, 18 (2018). https://doi.org/10.1007/s10092-018-0261-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0261-8

Keywords

Mathematics Subject Classification

Navigation