, 55:15 | Cite as

An interval extension of SMS method for computing weighted Moore–Penrose inverse

  • Falguni Roy
  • D. K. Gupta
  • Predrag S. Stanimirović


An interval extension of successive matrix squaring (SMS) method for computing the weighted Moore–Penrose inverse \(A^{\dagger }_{MN}\) along with its rigorous error bounds is proposed for given full rank \(m \times n\) complex matrices A, where M and N be two Hermitian positive definite matrices of orders m and n, respectively. Starting with a suitably chosen complex interval matrix containing \(A^{\dagger }_{MN}\), this method generates a sequence of complex interval matrices each enclosing \(A^{\dagger }_{MN}\) and converging to it. A new method is developed for constructing initial complex interval matrix containing \(A^{\dagger }_{MN}\). Convergence theorems are established. The R-order convergence is shown to be equal to at least l, where \(l \ge 2\). A number of numerical examples are worked out to demonstrate its efficiency and effectiveness. Graphs are plotted to show variations of the number of iterations and computational times compared to matrix dimensions. It is observed that ISMS is more stable compared to SMS.


Weighted Moore–Penrose inverse Successive matrix squaring method Interval arithmetic Interval iterative method Order of convergence 

Mathematics Subject Classification

15A09 65F20 65G30 


  1. 1.
    Alefeld, G., Herzberger, J.: Introduction to Interval Computation. Academic press, London (2012)MATHGoogle Scholar
  2. 2.
    Ben-Israel, A., Greville, T.N.: Generalized Inverses: Theory and Applications, vol. 15. Springer Science & Business Media, Berlin (2003)MATHGoogle Scholar
  3. 3.
    Ilić, Dragana S.Cvetković, Wei, Yimin: Algebraic Properties of Generalized Inverses. Springer, Berlin (2003)MATHGoogle Scholar
  4. 4.
    Bojanczyk, A., Higham, N.J., Patel, H.: Solving the indefinite least squares problem by hyperbolic QR factorization. SIAM J. Matrix Anal. Appl. 24(4), 914–931 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, L., Krishnamurthy, E., Macleod, I.: Generalised matrix inversion and rank computation by successive matrix powering. Parallel Comput. 20(3), 297–311 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Esmaeili, H., Pirnia, A.: An efficient quadratically convergent iterative method to find the Moore–Penrose inverse. Int. J. Comput. Math. 94(6), 1079–1088 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Li, Z., Sun, J.: Mixed and componentwise condition numbers for weighted Moore–Penrose inverse and weighted least squares problems. Filomat 23(1), 43–59 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lin, L., Lu, T.T., Wei, Y.: On level-2 condition number for the weighted Moore–Penrose inverse. Comput. Math. Appl. 55(4), 788–800 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Frommer, A., Hashemi, B., Sablik, T.: Computing enclosures for the inverse square root and the sign function of a matrix. Linear Algebra Appl. 456, 199–213 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ma, J., Qi, L., Li, Y.: The representations and computations of generalized inverses \({A}^{(1)}_{TS}\), \({A}^{(1,2)}_{TS}\) and the group inverse. Calcolo 54(4), 1147–1168 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sheng, Xingping: Computation of weighted Moore–Penrose inverse through Gauss–Jordan elimination on bordered matrices. Appl. Math. Comput. 323, 64–74 (2017)MathSciNetGoogle Scholar
  12. 12.
    Martins, M.: Some improvements on the convergence of the interval Maor method. Int. J. Comput. Math. 74(4), 493–507 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Miladinović, M., Miljković, S., Stanimirović, P.: Modified SMS method for computing outer inverses of Toeplitz matrices. Appl. Math. Comput. 218(7), 3131–3143 (2011)MathSciNetMATHGoogle Scholar
  14. 14.
    Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)CrossRefMATHGoogle Scholar
  15. 15.
    Neumaier, A.: Interval Methods for Systems of Equations, vol. 37. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  16. 16.
    Oseledets, I.V., Tyrtyshnikov, E.E.: Approximate inversion of matrices in the process of solving a hypersingular integral equation. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 45(2), 315–326 (2005)MathSciNetMATHGoogle Scholar
  17. 17.
    Petkovic, M.D., Petkovic, M.S.: Iterative methods for the inclusion of the inverse matrix. arXiv preprint arXiv:1406.5343 (2014)
  18. 18.
    Petković, M.D., Stanimirović, P.S., Tasić, M.B.: Effective partitioning method for computing weighted Moore–Penrose inverse. Comput. Math. Appl. 55(8), 1720–1734 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Potra, F.: On Q-order and R-order of convergence. J. Optim. Theory Appl. 63(3), 415–431 (1989)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Rump, S.M.: INTLAB–INTerval LABoratory. In: Cesndes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  21. 21.
    Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Rump, S.M., Graillat, S.: Verified error bounds for multiple roots of systems of nonlinear equations. Numer. Algorithms 54(3), 359–377 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Ullah, M.Z., Soleymani, F., Al-Fhaid, A.S.: An efficient matrix iteration for computing weighted Moore–Penrose inverse. Appl. Math. Comput. 226, 441–454 (2014)MathSciNetMATHGoogle Scholar
  24. 24.
    Soheili, A.R., Soleymani, F., Petkovic, M.D.: On the computation of weighted Moore–Penrose inverse using a high-order matrix method. Comput. Math. Appl. 66(11), 2344–2351 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Saraev, P.V.: Interval pseudo-inverse matrices and interval Greville algorithm. Reliab. Comput. 18, 147–156 (2013)MathSciNetGoogle Scholar
  26. 26.
    Sheng, X., Chen, G.: A note of computation for MP inverse \(A^{\dagger }\). Int. J. Comput. Math. 87(10), 2235–2241 (2010)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Stanimirović, P.S., Cvetković-Ilić, D.S.: Successive matrix squaring algorithm for computing outer inverses. Appl. Math. Comput. 203(1), 19–29 (2008)MathSciNetMATHGoogle Scholar
  28. 28.
    Van Loan, C.F.: Generalizing the singular value decomposition. SIAM J. Numer. Anal. 13(1), 76–83 (1976)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Wang, H., Cao, D., Liu, H., Qiu, L.: Numerical validation for systems of absolute value equations. Calcolo 54(3), 669–683 (2017)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Wei, Y.: Successive matrix squaring algorithm for computing the Drazin inverse. Appl. Math. Comput. 108(2), 67–75 (2000)MathSciNetMATHGoogle Scholar
  31. 31.
    Wei, Y., Wu, H., Wei, J.: Successive matrix squaring algorithm for parallel computing the weighted generalized inverse \(A^{\dagger }_{ MN}\). Appl. Math. Comput. 116(3), 289–296 (2000)MathSciNetMATHGoogle Scholar
  32. 32.
    Zhang, N., Wei, Y.: A note on the perturbation of an outer inverse. Calcolo 45(4), 263–273 (2008)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Zhang, X., Cai, J., Wei, Y.: Interval iterative methods for computing Moore–Penrose inverse. Appl. Math. Comput. 183(1), 522–532 (2006)MathSciNetMATHGoogle Scholar
  34. 34.
    Chen, Y., Shi, X., Wei, Y.: Convergence of Rump’s method for computing the Moore–Penrose inverse. Czechoslov. Math. J. 66(3), 859–879 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  • Falguni Roy
    • 1
  • D. K. Gupta
    • 1
  • Predrag S. Stanimirović
    • 2
  1. 1.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Faculty of Science and MathematicsUniversity of NišNisSerbia

Personalised recommendations