, 55:14 | Cite as

A numerical method for solving shortest path problems

  • M. H. Noori Skandari
  • M. Ghaznavi


Chebyshev pseudo-spectral method is one of the most efficient methods for solving continuous-time optimization problems. In this paper, we utilize this method to solve the general form of shortest path problem. Here, the main problem is converted into a nonlinear programming problem and by solving of which, we obtain an approximate shortest path. The feasibility of the nonlinear programming problem and the convergence of the method are given. Finally, some numerical examples are considered to show the efficiency of the presented method over the other methods.


Shortest path problem Chebyshev pseudo-spectral method Nonlinear programming 

Mathematics Subject Classification

49M37 49J15 65N35 


  1. 1.
    Borzabadi, A.H., Kamyad, A.V., Farahi, M.H., Mehne, H.H.: Solving some optimal path planning problems using an approach based on measure theory. Appl. Math. Comput. 170, 1418–1435 (2005)MathSciNetMATHGoogle Scholar
  2. 2.
    Canuto, C., Hussaini, Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics (Scientific Computation). Springer, New York (1987)MATHGoogle Scholar
  3. 3.
    Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Fahroo, F., Ross, I.M.: Costate estimation by a legendre pseudospectral method. J. Guid. Control Dyn. 24(2), 270–277 (2001)CrossRefGoogle Scholar
  5. 5.
    Fahroo, F., Ross, I.M.: Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dyn. 25(1), 160–166 (2002)CrossRefGoogle Scholar
  6. 6.
    Freud, G.: Orthogonal Polynomials. Pregamon Press, Elmsford (1971)MATHGoogle Scholar
  7. 7.
    Ghaznavi, M., Noori Skandari, M.H.: An efficient pseudo-spectral method for nonsmooth dynamical systems. Iran. J. Sci. Technol. Trans. A Sci. (2016).
  8. 8.
    Gong, Q., Kang, W., Ross, I.M.: A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Trans. Autom. Control 51(7), 1115–1129 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gong, Q., Ross, I.M., Kang, W., Fahroo, F.: Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control. Comput. Optim. Appl. 41(3), 307–335 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic, Norwell, MA (1991)CrossRefMATHGoogle Scholar
  11. 11.
    Lu, Y., Yi, S., Liu, Y., Ji, Y.: A novel path planning method for biomimetic robot based on deep learning. Assem. Autom. 36(2), 186–191 (2016)CrossRefGoogle Scholar
  12. 12.
    Ma, Y., Zamirian, M., Yang, Y., Xu, Y., Zhang, J.: Path planning for mobile objects in four-dimension based on particle swarm optimization method with penalty function. Math. Probl. Eng. 2013, 1–9 (2013)Google Scholar
  13. 13.
    Mortezaee, M., Nazemi, A.: A wavelet collocation scheme for solving some optimal path planning problems. ANZIAM 57, 461–481 (2015)MathSciNetMATHGoogle Scholar
  14. 14.
    Noori Skandari, M.H., Ghaznavi, M.: Chebyshev pseudo-spectral method for Bratu’s problem. Iran. J. Sci. Technol. Trans. A Sci. 41, 913–921 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Noori Skandari, M.H., Kamyad, A.V., Effati, S.: Generalized Euler–Lagrange equation for nonsmooth calculus of variations. Nonlinear Dyn. 75(1–2), 85–100 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Noori Skandari, M.H., Kamyad, A.V., Effati, S.: Smoothing approach for a class of nonsmooth optimal control problems. Appl. Math. Model. 40(2), 886–903 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    O’Hara, H., Smith, F.J.: Error estimation in the Clenshaw–Curtis quadrature formula. Comput. J. 11, 213–219 (1968)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Otte, M., Correll, N.: C-FOREST: parallel shortest path planning with superlinear speedup. IEEE Robot. Autom. Soc. 29(3), 798–806 (2013)Google Scholar
  19. 19.
    Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, Heidelberg (1997)CrossRefMATHGoogle Scholar
  20. 20.
    Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithm, Analysis and Applications. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  21. 21.
    Tohidi, E., Samadi, O.R.N.: Legendre spectral collocation method for approximating the solution of shortest path problems. Syst. Sci. Control Eng. 3, 62–68 (2015)CrossRefGoogle Scholar
  22. 22.
    Trefethen, L.N.: Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics, Philadelphia (2000)CrossRefMATHGoogle Scholar
  23. 23.
    Wang, Y., Lane, D.M., Falconer, G.J.: Two novel approaches for unmanned under water vehicle path planning: constrained optimisation and semi-infinite constrained optimisation. Robotica 18, 123–142 (2000)CrossRefGoogle Scholar
  24. 24.
    Zamirian, M., Farahi, M.H., Nazemi, A.R.: An applicable method for solving the shortest path problems. Appl. Math. Comput. 190, 1479–1486 (2007)MathSciNetMATHGoogle Scholar
  25. 25.
    Zamirian, M., Kamyad, A.V., Farahi, M.H.: A novel algorithm for solving optimal path planning problems based on parametrization method and fuzzy aggregation. Phys. Lett. A 373(38), 3439–3449 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematical SciencesShahrood University of TechnologyShahroodIran

Personalised recommendations