, 55:11 | Cite as

A Neumann series of Bessel functions representation for solutions of Sturm–Liouville equations

  • Vladislav V. Kravchenko
  • Sergii M. Torba


A Neumann series of Bessel functions (NSBF) representation for solutions of Sturm–Liouville equations and for their derivatives is obtained. The representation possesses an attractive feature for applications: for all real values of the spectral parameter \(\omega \) the estimate of the difference between the exact solution and the approximate one (the truncated NSBF) depends on N (the truncation parameter) and the coefficients of the equation and does not depend on \(\omega \). A similar result is valid when \(\omega \in {\mathbb {C}}\) belongs to a strip \(\left| \hbox {Im }\omega \right| <C\). This feature makes the NSBF representation especially useful for applications requiring computation of solutions for large intervals of \(\omega \). Error and decay rate estimates are obtained. An algorithm for solving initial value, boundary value or spectral problems for the Sturm–Liouville equation is developed and illustrated on a test problem.


Sturm-Liouville equation Liouville transform Neumann series of Bessel functions Transmutation operator Approximate solution 

Mathematics Subject Classification

34A25 34A45 34B05 34B24 41A10 41A25 42C10 65L05 65L15 


  1. 1.
    Abramovitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)Google Scholar
  2. 2.
    Baricz, A., Jankov, D., Pogány, T.K.: Neumann series of Bessel functions. Integral Transforms Spec. Funct. 23(7), 529–538 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barnett, A.R.: The calculation of spherical Bessel and Coulomb functions. In: Bartschat, K. (ed.) Computational Atomic Physics, p. 249. Springer, Berlin (1996). ISBN 3-540-60179-1Google Scholar
  4. 4.
    Camporesi, R., Di Scala, A.J.: A generalization of a theorem of Mammana. Colloq. Math. 122(2), 215–223 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar
  6. 6.
    Everitt, W.N.: A catalogue of Sturm–Liouville differential equations. In: Theory, Sturm-Liouville (ed.) Past and Present, pp. 271–331. Birkhäuser, Basel (2005)Google Scholar
  7. 7.
    Gillman, E., Fiebig, H.R.: Accurate recursive generation of spherical Bessel and Neumann functions for a large range of indices. Comput. Phys. 2, 62–72 (1988)CrossRefGoogle Scholar
  8. 8.
    Kamke, E.: Handbook of Ordinary Differential Equations. Moscow: Nauka (1976). (Russian translation from the German original, Differentialgleichungen. Lösungsmethoden und Lösungen. Leipzig, 1959)Google Scholar
  9. 9.
    Khmelnytskaya, K.V., Kravchenko, V.V., Rosu, H.C.: Eigenvalue problems, spectral parameter power series, and modern applications. Math. Methods Appl. Sci. 38, 1945–1969 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kravchenko, V.V.: A representation for solutions of the Sturm–Liouville equation. Complex Var. Elliptic Equ. 53, 775–789 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kravchenko, V.V., Morelos, S., Torba, S.M.: Liouville transformation, analytic approximation of transmutation operators and solution of spectral problems. Appl. Math. Comput. 273, 321–336 (2016)MathSciNetGoogle Scholar
  12. 12.
    Kravchenko, V.V., Morelos, S., Tremblay, S.: Complete systems of recursive integrals and Taylor series for solutions of Sturm–Liouville equations. Math. Methods Appl. Sci. 35, 704–715 (2012)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kravchenko, V.V., Navarro, L.J., Torba, S.M.: Representation of solutions to the one-dimensional Schrödinger equation in terms of Neumann series of Bessel functions Appl. Math. Comput. 314, 173–192 (2017)MathSciNetGoogle Scholar
  14. 14.
    Kravchenko, V.V., Porter, R.M.: Spectral parameter power series for Sturm–Liouville problems. Math. Methods Appl. Sci. 33, 459–468 (2010)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Castillo-Pérez, R., Kravchenko, V.V., Torba, S.M.: A Neumann series of Bessel functions representation for solutions of perturbed Bessel equations. Appl. Anal. 28 (2017).
  16. 16.
    Kravchenko, V.V., Torba, S.M.: Modified spectral parameter power series representations for solutions of Sturm–Liouville equations and their applications. Appl. Math. Comput. 238, 82–105 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kravchenko, V.V., Torba, S.M.: Analytic approximation of transmutation operators and applications to highly accurate solution of spectral problems. J. Comput. Appl. Math. 275, 1–26 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kravchenko, V.V., Torba, S.M.: Analytic approximation of transmutation operators and related systems of functions. Bol. Soc. Mat. Mex. 22, 379–429 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Levitan, B.M.: Inverse Sturm–Liouville Problems. VSP, Zeist (1987)zbMATHGoogle Scholar
  20. 20.
    Marchenko, V.A.: Sturm–Liouville Operators and Applications, Revised edn. AMS Chelsea Publishing, Providence (2011)zbMATHGoogle Scholar
  21. 21.
    Marchenko, V.A.: Some questions on one-dimensional linear second order differential operators. Trans. Mosc. Math. Soc. 1, 327–420 (1952)Google Scholar
  22. 22.
    Trimeche, K.: Transmutation Operators and Mean-Periodic Functions Associated with Differential Operators. Harwood Academic Publishers, London (1988)zbMATHGoogle Scholar
  23. 23.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Reprinted, 2nd edn. Cambridge University Press, Cambridge (1996)Google Scholar
  24. 24.
    Wilkins, J.E.: Neumann series of Bessel functions. Trans. Am. Math. Soc. 64, 359–385 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zwillinger, D.: Handbook of Differential Equations. Academic Press, New York (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemáticas, Unidad QuerétaroCINVESTAV del IPNQuerétaroMexico

Personalised recommendations