Advertisement

Calcolo

, 55:7 | Cite as

Iterative methods for zeros of a monotone variational inclusion in Hilbert spaces

  • Nguyen Buong
  • Pham Thi Thu Hoai
Article
  • 97 Downloads

Abstract

In this paper, we introduce implicit and explicit iterative methods for finding a zero of a monotone variational inclusion in Hilbert spaces. As consequence, an improvement modification of an algorithm existing in literature is obtained. A numerical example is given for illustrating our algorithm.

Keywords

Nonexpansive mapping Fixed point Variational inequality Monotone variational inclusion 

Mathematics Subject Classification

47J05 47H09 49J30 

Notes

Acknowledgements

The authors are extremely grateful to the referees for their useful comments, which helped to improve this paper. This work was supported by the Vietnam National Foundation for Science and Technology Development under Grant No. 101.02-2017.305.

References

  1. 1.
    Barbu, V.: Nonlinear Semigroup and Differential Equations in Banach Spaces. Academiei Bucuresti, Romania (1976)CrossRefMATHGoogle Scholar
  2. 2.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  3. 3.
    Boikanyo, O.A., Morosanu, G.: A proximal point algorithm converging strongly for general errors. Optim. Lett. 4, 635–641 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Boikanyo. O.A., Morosanu, G.: A generalization of the regularization proximal point method. Nonlinear Anal. Appl. 2012, Article ID jnaa-00129 (2012).  https://doi.org/10.5899/2012/jnaa-00129
  5. 5.
    Boikanyo, O.A.: The viscosity approximation forward–backward method for zero of the sum of monotone operator. Abstr. Appl. Anal. 2016, Article ID 2371857 (2016)Google Scholar
  6. 6.
    Brézis, H., Lions, P.L.: Produits infinis de resolvants. Isr. J. Math. 29, 329–345 (1978)CrossRefMATHGoogle Scholar
  7. 7.
    Bruck, R.E.: A strong convergent iterative solution of \(0 \in U(x)\) for a maximal monotone operator \(U\) in Hilbert space. J. Math. Anal. Appl. 48, 114–126 (1974)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Buong, N., Duong, L.T.T.: An explicit iterative algorithm for a class of variational inequalities. J. Optim. Theory Appl. 151, 513–528 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Buong, N., Phuong, N.T.H.: Strong convergence to solutions for a class of variational inequalities in Banach spaces by implicit iteration methods. J. Optim. Theory Appl 159, 399–411 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Buong, N., Ha, N.S., Thuy, N.T.T.: A new explicit iteration method for a class of variational inequalities. Numer. Algorithms 72, 467–481 (2016)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Buong, N., Quynh, V., Thuy, N.T.T.: A steepest-descent Krasnosel’skii–Mann algorithm for a class of variational inequalities in Banach spaces. J. Fixed Point Theory Appl. 18, 519–532 (2016)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Buong, N.: Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces. Numer. Algorithms 76(3), 783–798 (2017).  https://doi.org/10.1007/s11075-017-0282-4 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ceng, L.C., Ansari, Q.H., Yao, J.C.: Mann-type steepest-descent and modified hybrid steepest descent methods for variational inequalities in Banach spaces. Numer. Funct. Anal. Optim. 29(9–10), 987–1033 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Duvaut, D., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)CrossRefMATHGoogle Scholar
  16. 16.
    Giannessi, F., Maugeri, A.: Variational Inequalities and Network Equilibrium Problems. Plenum, New York (1995)CrossRefMATHGoogle Scholar
  17. 17.
    Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)CrossRefMATHGoogle Scholar
  18. 18.
    Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hartman, P., Stampacchia, G.: On some nonlinear elliptic differential functional equations. Acta Math. 115, 271–310 (1966)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hlavacek, I., Haslinger, J., Necas, J., Lovicek, J.: Solution of Variational Inequalities in Mechanics. Springer, New York (1982)Google Scholar
  21. 21.
    Jiao, H., Wang, F.: On an iterative method for finding a zero to the sum of two maximal monotone operators. J. Appl. Math. 2014, Article ID 414031 (2014)Google Scholar
  22. 22.
    Kakimura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory. 106, 226–240 (2000)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Khongtham, Y.K.: New iterative method for variational inclusion and fixed point problems. In: Proceeding of the World Congress on Engineering 2014, vol. II WCE 2014, July 2–4, 2014, Lodon UK (2014)Google Scholar
  24. 24.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)MATHGoogle Scholar
  25. 25.
    Kluge, R.: Optimal control with minimum problems and variational inequalities. Lect. Notes Comput. Sci. 27, 377–382 (1975)CrossRefMATHGoogle Scholar
  26. 26.
    Kluge, R.: Approximation methods for nonlinear problems with constrains in forms of variational inequalities. Banach Center Publ. 1, 131–138 (1976)CrossRefGoogle Scholar
  27. 27.
    Lehdili, N., Moudafi, A.: Combining the proximal point algorithm and Tikhonov regularization. Optimization 37, 239–252 (1996)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Lions, J.L., Stampacchia, G.: Variational inequalities. Comm. Pure Appl. Math. 20, 493–519 (1967)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Liou, Y.C.: Iterative methods for the sum of two monotone operators. J. Appl. Math. 2012, Article ID 638632 (2012)Google Scholar
  30. 30.
    Martinet, B.: Regularisation d’inéquations variationelles par approximations succivees. Rev. Fr. Inform. Rech. Oper. 4, 154–159 (1970)MATHGoogle Scholar
  31. 31.
    Nevanlinna, O., Reich, S.: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Isr. J. Math. 32, 44–58 (1979)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Birkhauser, Boston (1985)CrossRefMATHGoogle Scholar
  33. 33.
    Passty, G.P.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert spaces. J. Math. Anal. Appl. 72, 383–390 (1979)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Reich, S.: Weak convergence theorem for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Sibony, M.: Sur l’approximation d’equation et inéquation aux derivees partielles nonlineairies de type monotone. J. Math. Anal. Appl. 34, 502–564 (1972)CrossRefGoogle Scholar
  38. 38.
    Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in Hilbert spaces. Math. Program. 87, 189–202 (2000)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Takahashi, W., Ueda, Y.: On Reich’s strong convergence theorems for resolvents of accretive operators. J. Math. Anal. Appl. 104, 546–553 (1984)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Takahashi, W., Wong, N.C., Yao, J.C.: Two generalized strong convergence theorems of Halpern’s type in Hilbert spaces and applications. Taiwan. J. Math. 16(3), 1151–1172 (2012)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Takahashi, S., Takahashi, W., Toyota, M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147, 27–41 (2010)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Takahashi, W., Wong, N.C., Yao, J.C.: Iterative common solutions for monotone inclusion problems, fixed point problems and equilibrium problems. Fixed Point Theory Appl. 2012, 181 (2012)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)MATHGoogle Scholar
  44. 44.
    Tian, ChA, Song, Y.: Strong convergence of a regularization method for Rockafellar’s proximal point algorithm. J. Glob. Optim. 55, 831–837 (2013)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Wang, S.: On fixed point and variational inclusion problem. Filomat 29(6), 1409–1411 (2015)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Wu, H.C., Cheng, C.Z.: Iterative methods for equilibrium problems and monotone inclusion problems in Hilbert spaces. J. Appl. Math. 2013, Article ID 280909 (2013)Google Scholar
  47. 47.
    Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Xu, H.K.: A regularization method for the proximal point algorithm. J. Glob. Optim. 36, 115–125 (2006)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Xu, H.K.: Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 150, 360–378 (2011)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 473–504. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  51. 51.
    Yao, Y., Noor, M.A.: On convergence criteria of generalized proximal point algorithm. J. Comput. Appl. Math. 217, 46–55 (2008)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Zeidler, E.: Nonlinear Functional Analysis and Applications. III: Variational Methods and Optimization. Springer, New York (1985)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Duy Tan UniversityDa NangViet Nam
  2. 2.Vietnam Maritime UniversityHaiphongVietnam

Personalised recommendations