Skip to main content
Log in

Optimal vorticity accuracy in an efficient velocity–vorticity method for the 2D Navier–Stokes equations

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We study a velocity–vorticity scheme for the 2D incompressible Navier–Stokes equations, which is based on a formulation that couples the rotation form of the momentum equation with the vorticity equation, and a temporal discretization that stably decouples the system at each time step and allows for simultaneous solving of the vorticity equation and velocity–pressure system (thus if special care is taken in its implementation, the method can have no extra cost compared to common velocity–pressure schemes). This scheme was recently shown to be unconditionally long-time \(H^1\) stable for both velocity and vorticity, which is a property not shared by any common velocity–pressure method. Herein, we analyze the scheme’s convergence, and prove that it yields unconditional optimal accuracy for both velocity and vorticity, thus making it advantageous over common velocity–pressure schemes if the vorticity variable is of interest. Numerical experiments are given that illustrate the theory and demonstrate the scheme’s usefulness on some benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Babuska, I.: Error bounds for finite element methods. Numer. Math. 16, 322–333 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bochev, P.: Negative norm least-squares methods for the velocity–vorticity–pressure Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 15(2), 237–256 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  4. Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multpliers. R.A.I.R.O 8, 129–151 (1974)

    MATH  Google Scholar 

  5. Charnyi, S., Heister, T., Olshanskii, M., Rebholz, L.: On conservation laws of Navier–Stokes Galerkin discretizations. J. Comput. Phys. 337, 289–308 (2017)

    Article  MathSciNet  Google Scholar 

  6. Ervin, V.J., Heuer, N.: Approximation of time-dependent, viscoelastic fluid flow: Crank–Nicolson, finite element approximation. Numer. Methods Partial Differ. Equ. 20, 248–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  8. Gresho, P., Sani, R.: Incompressible Flow and the Finite Element Method, vol. 2. Wiley, New York (1998)

    MATH  Google Scholar 

  9. Gresho, P.M.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: theory. Int. J. Numer. Methods Fluids 11(5), 587–620 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heath, M.: Scientific Computing: An Introductory Survey. McGraw-Hill, New York (2002)

    MATH  Google Scholar 

  11. Heister, T., Olshanskii, M. A., Rebholz, L. G.: Unconditional long-time stability of a velocity–vorticity method for 2D Navier–Stokes equations. Numerische Mathematik 135(1), 143–167 (2016)

  12. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for the second order time discretization. SIAM J. Numer. Anal. 2, 353–384 (1990)

    Article  MATH  Google Scholar 

  13. John, V.: Large Eddy Simulation of Turbulent Incompressible Flows: Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2004)

    Book  Google Scholar 

  14. Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach Science Publishers, New York (1969)

    MATH  Google Scholar 

  15. Layton, W.: Introduction to Finite Element Methods for Incompressible, Viscous Flow. SIAM, Philadelphia (2008)

    Google Scholar 

  16. Layton, W., Manica, C.C., Neda, M., Olshanskii, M., Rebholz, L.G.: On the accuracy of the rotation form in simulations of the Navier–Stokes equations. J. Comput. Phys. 228, 3433–3447 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, H.K., Olshanskii, M.A., Rebholz, L.G.: On error analysis for the 3D Navier–Stokes equations in velocity–vorticity–helicity form. SIAM J. Numer. Anal. 49(2), 711–732 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25, 995–1017 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Najjar, F., Vanka, S.: Simulations of the unsteady separated flow past a normal flat plate. Int. J. Numer. Methods Fluids 21, 525–547 (1995)

    Article  MATH  Google Scholar 

  20. Olshanskii, M.A., Rebholz, L.G.: Velocity–vorticity–helicity formulation and a solver for the Navier–Stokes equations. J. Comput. Phys. 229, 4291–4303 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Olshanskii, M.A., Heister, T., Rebholz, L., Galvin, K.: Natural vorticity boundary conditions on solid walls. Comput. Methods Appl. Mech. Eng. 297, 18–37 (2015)

    Article  MathSciNet  Google Scholar 

  22. Saha, A.: Far-wake characteristics of two-dimensional flow past a normal flat plate. Phys. Fluids 19(128110), 1–4 (2007)

    MATH  Google Scholar 

  23. Saha, A.: Direct numerical simulation of two-dimensional flow past a normal flat plate. J. Eng. Mech. 139(12), 1894–1901 (2013)

    Article  Google Scholar 

  24. Schroeder, P., Lube, G.: Pressure-robust analysis of divergence-free and conforming fem for evolutionary incompressible Navier–Stokes flows. J. Numer. Math. (2016). https://doi.org/10.1515/jnma-2016-1101

  25. Tezduyar, T., Mittal, S., Ray, S., Shih, R.: Incompressible flow computations with stabilized bilinear and linear equal order interpolation velocity–pressure elements. Comput. Methods Appl. Mech. Eng. 95, 221–242 (1992)

    Article  MATH  Google Scholar 

  26. Tone, F.: On the long-time stability of the Crank–Nicholson scheme for the 2D Navier–Stokes equations. Numer. Methods D. E. 23(5), 1235–1248 (2007)

    Article  MATH  Google Scholar 

  27. Tone, F., Wirosoetisno, D.: On the long-time stability of the implicit Euler scheme for the two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 44(1), 29–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wong, K.L., Baker, A.J.: A 3D incompressible Navier–Stokes velocity–vorticity weak form finite element algorithm. Int. J. Numer. Methods Fluids 38, 99–123 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Rebholz.

Additional information

L. G. Rebholz: Partially supported by NSF Grant DMS 1522191 and U.S. Army Grant 65294-MA.

C. Zerfas: Partially supported by NSF Grant DMS 1522191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbas, M., Rebholz, L.G. & Zerfas, C. Optimal vorticity accuracy in an efficient velocity–vorticity method for the 2D Navier–Stokes equations. Calcolo 55, 3 (2018). https://doi.org/10.1007/s10092-018-0246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0246-7

Mathematics Subject Classification

Navigation