, 55:1 | Cite as

An inexact Newton method for solving complementarity problems in hydrodynamic lubrication



We present an iterative procedure based on a damped inexact Newton iteration for solving linear complementarity problems. We introduce the method in the framework of a popular problem arising in mechanical engineering: the analysis of cavitation in lubricated contacts. In this context, we show how the perturbation and the damping parameter are chosen in our method and we prove the global convergence of the entire procedure. A Fortran implementation of the method is finally analyzed. First, we validate the procedure and analyze all its components, performing also a comparison with a recently proposed technique based on the Fischer–Burmeister–Newton iteration. Then, we solve a 2D problem and provide some insights on an efficient implementation of the method exploiting routines of the Lapack and of the PETSc packages for the solution of inner linear systems.


Complementarity problem Damped Inexact Newton algorithm Cavitation Lubrication 

Mathematics Subject Classification

65H10 65K05 65L12 90C51 76B10 



The authors desire to thank the anonymous referees for their valuable comments and suggestions.


  1. 1.
    Almqvist, A., Wall, P.: Modelling cavitation in (elasto)hydrodynamic lubrication. In: Darji, P.H. (ed.) Advances in Tribology (2016)Google Scholar
  2. 2.
    Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix. Anal. A 23(1), 15–41 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Amestoy, P.R., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999)Google Scholar
  5. 5.
    Argaez, M., Tapia, R., Velazquez, L.: Numerical comparisons of path-following strategies for a primal-dual interior-point method for nonlinear programming. J. Optim. Theory App. 114, 255–272 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Armijo, L.: Minimization of functions having Lipschitz-continuous first partial derivatives. Pac. J. Math. 16, 1–3 (1966)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Bruaset, A.M., Langtangen, H.P., Arge, E. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Cambridge (1997)CrossRefGoogle Scholar
  8. 8.
    Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.8, Argonne National Laboratory, (2017).
  9. 9.
    Benzi, M., Wathen, A.J.: Some preconditioning techniques for saddle point problems. In: Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds.) Model Order Reduction: Theory, Research Aspects and Applications, vol. 13, pp. 195–211. Springer, Berlin (2008)CrossRefGoogle Scholar
  10. 10.
    Bernstein, D.S.: Matrix Mathematics: Theory, Facts and Formulas, 2nd edn. Princeton University Press, Princeton (2009)MATHGoogle Scholar
  11. 11.
    Bertocchi, L., Dini, D., Giacopini, M., Fowell, M., Baldini, A.: Fluid film lubrication in the presence of cavitation: a mass-conserving two-dimensional formulation for compressible, piezoviscous and non-Newtonian fluids. Tribol. Int. 67, 61–71 (2013)CrossRefGoogle Scholar
  12. 12.
    Bonettini, S., Galligani, E., Ruggiero, V.: Inner solvers for interior point methods for large scale nonlinear programming. Comput. Optim. Appl. 37, 1–34 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bonneau, D., Hajjam, M.: Modélisation de la rupture et de la reformation des films lubrifiants dans les contacts élastohydrodynamiques. Eur. J. Comput. Mech. 10, 679–704 (2001)MATHGoogle Scholar
  14. 14.
    Capriz, G., Cimatti, G.: Free boundary problems in the theory of hydrodynamic lubrication: A survey. Tech. Rep. Nota Informatica C81-7, Istituto di Matematica, University of Pisa (1981)Google Scholar
  15. 15.
    Chapiro, G., Gutierrez, A.E., Herskovits, J., Mazorche, S.R., Pereira, W.S.: Numerical solution of a class of moving boundary problems with a nonlinear complementarity approach. J. Optim. Theory Appl. 168(2), 534–550 (2016)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Cimatti, G., Menchi, O.: On the numerical solution of a variational inequality connected with the hydrodynamica lubrication of a complete journal bearing. Calcolo 15, 249–258 (1978)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Cottle, R.W., Dantzig, G.B.: Complementarity pivot theory of mathematical programming. Linear Algebra Appl. 1, 103–125 (1968)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Classics in Applied Mathematics, SIAM (2009)Google Scholar
  19. 19.
    Cryer, C.: The numerical solution of a degenerate variational inequality. In: Parter, S.V. (ed.) Numerical Methods for Partial Differential Equations (1979)Google Scholar
  20. 20.
    Cryer, C., Dempster, A.: Equivalence of linear complementarity problems and linear programs in vector lattice Hilbert spaces. SIAM J. Control Optim. 18(1), 76–90 (1980)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Dembo, R., Eisenstat, S., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. A 20(3), 720–755 (1999)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Durazzi, C.: On the Newton interior-point method for nonlinear programming problems. J. Optim. Theory Appl. 104, 73–90 (2000)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Eisenstat, S., Walker, H.: Globally convergent inexact Newton methods. SIAM J. Optim. 4, 393–422 (1994)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    El-Bakri, A., Tapia, R., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton interior point method for nonlinear programming. J. Optim. Theory Appl. 89, 507–541 (1996)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Fokkema, D., Sleijpen, G., Van der Vost, H.: Accelerated inexact Newton schemes for large systems of nonlinear equations. SIAM J. Sci. Comput. 19, 657–674 (1998)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Galligani, E.: Analysis of the convergence of an inexact Newton method for solving Karush-Kuhn-Tucker systems. In: Atti del Seminario Matematico e Fisico dell’Università di Modena e Reggio Emilia LII, pp. 331–368 (2004)Google Scholar
  29. 29.
    Giacopini, M., Fowell, M., Dini, D., Strozzi, A.: A mass-conserving complementarity formulation to study lubricant films in the presence of cavitation. J. Tribol. 132(4), 041702 (2010)Google Scholar
  30. 30.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRefMATHGoogle Scholar
  31. 31.
    Kelley, C.: Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Mathematics. SIAM, Philadelphia (1995)CrossRefGoogle Scholar
  32. 32.
    Khonsari, M., Booser, E.: Applied Tribology: Bearing, Design and Lubrication, 2nd edn. Wiley, Chichester (2008)CrossRefGoogle Scholar
  33. 33.
    Kostreva, M.: Elasto-hydrodynamic lubrication: a nonlinear complementarity problem. Int. J. Numer. Meth. Fl 4, 377–397 (1984)CrossRefMATHGoogle Scholar
  34. 34.
    Lakshmikantham, V., Trigiante, D.: Theory of Difference Equations: Numerical Methods and Applications, 2nd edn. Marcel Dekker Inc., New York (2002)CrossRefMATHGoogle Scholar
  35. 35.
    Laratta, A., Menchi, O.: Approssimazione della soluzione di una disequazione variazionale. Applicazione ad un problema di frontiera libera. Calcolo 11, 243–267 (1974)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Li, X., Demmel, J., Gilbert, J., Grigori, L., Shao, M., Yamazaki, I.: SuperLU Users’ Guide. Tech. Rep. LBNL-44289, Lawrence Berkeley National Laboratory, (1999)
  37. 37.
    McAllister, G., Rohde, S.: An optimization problem in hydrodynamic lubrication theory. Appl. Math. Optim. 2, 223–235 (1976)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Morini, B., Simoncini, V., Tani, M.: A comparison of reduced and unreduced kkt systems arising from interior point methods. Comput. Optim. Appl. 68(1), 1–27 (2017)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)CrossRefMATHGoogle Scholar
  40. 40.
    Oh, K., Goenka, P.: The elastohydrodynamic solution of journal bearings under dynamic loading. J. Tribol. 107(3), 389–395 (1985)CrossRefGoogle Scholar
  41. 41.
    Rheinboldt, W.: Methods for Solving Systems of Nonlinear Equations, 2nd edn. SIAM, Philadelphia (1998)CrossRefMATHGoogle Scholar
  42. 42.
    Siefert, C., De Sturler, E.: Preconditioners for generalized saddle-point problems. SIAM J. Numer. Anal. 44(3), 1275–1296 (2006)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Süli, E., Mayers, D.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  44. 44.
    Varga, R.: Matrix Iterative Analysis, 2nd edn. Springer, Berlin (2000)CrossRefMATHGoogle Scholar
  45. 45.
    Woloszynski, T., Podsiadlo, P., Stachowiak, G.W.: Efficient solution to the cavitation problem in hydrodynamic lubrication. Tribol. Lett. 58, 1–11 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering “Enzo Ferrari”University of Modena and Reggio EmiliaModenaItaly

Personalised recommendations