Skip to main content
Log in

Multigrid algorithms for \(\varvec{hp}\)-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper we analyze the convergence properties of two-level and W-cycle multigrid solvers for the numerical solution of the linear system of equations arising from hp-version symmetric interior penalty discontinuous Galerkin discretizations of second-order elliptic partial differential equations on polygonal/polyhedral meshes. We prove that the two-level method converges uniformly with respect to the granularity of the grid and the polynomial approximation degree p, provided that the number of smoothing steps, which depends on p, is chosen sufficiently large. An analogous result is obtained for the W-cycle multigrid algorithm, which is proved to be uniformly convergent with respect to the mesh size, the polynomial approximation degree, and the number of levels, provided the number of smoothing steps is chosen sufficiently large. Numerical experiments are presented which underpin the theoretical predictions; moreover, the proposed multilevel solvers are shown to be convergent in practice, even when some of the theoretical assumptions are not fully satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Antonietti, P.F., Beirão Da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonietti, P.F., Beirão Da Veiga, L., Scacchi, S., Verani, M.: A C1 virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonietti, P.F., Brezzi, F., Marini, L.: Stabilizations of the Baumann-Oden DG formulation: the 3D case. Boll. Unione Mat. Ital. (9) 1(3), 629–643 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Antonietti, P.F., Brezzi, F., Marini, L.D.: Bubble stabilization of discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 198(21–26), 1651–1659 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antonietti, P.F., Cangiani, A., Collis, J., Dong, Z., Georgoulis, E.H., Giani, S., Houston, P.: Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains. In: Barrenechea G. R. et al. (eds.) Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Lecture Notes in Computational Science and Engineering, vol. 114, pp. 279–307 (2016)

  6. Antonietti, P.F., Facciola, C., Russo, A., Verani, M.: Discontinuous Galerkin approximation of flows in fractured porous media on polygonal and polyhedral meshes. MOX Report 55/2016 (2016)

  7. Antonietti, P.F., Formaggia, L., Scotti, A., Verani, M., Nicola, V.: Mimetic finite difference approximation of flows in fractured porous media. Math. Model. Numer. Anal. 50(3), 809–832 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Antonietti, P.F., Giani, S., Houston, P.: \(hp\)-Version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35(3), A1417–A1439 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Antonietti, P.F., Giani, S., Houston, P.: Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains. J. Sci. Comput. 60(1), 203–227 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Antonietti, P.F., Houston, P.: A class of domain decomposition preconditioners for \(hp\)-discontinuous Galerkin finite element methods. J. Sci. Comput. 46(1), 124–149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Antonietti, P.F., Houston, P.: Preconditioning high-order discontinuous Galerkin discretizations of elliptic problems. Lect. Notes Comput. Sci. Eng. 91, 231–238 (2013)

    Article  MathSciNet  Google Scholar 

  12. Antonietti, P.F., Houston, P., Smears, I.: A note on optimal spectral bounds for nonoverlapping domain decomposition preconditioners for hp-version discontinuous Galerkin methods. Int. J. Numer. Anal. Model. 13(4), 513–524 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Antonietti, P.F., Sarti, M., Verani, M.: Multigrid algorithms for \(hp\)-discontinuous Galerkin discretizations of elliptic problems. SIAM J. Numer. Anal. 53(1), 598–618 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Antonietti, P.F., Sarti, M., Verani, M.: Multigrid algorithms for high order discontinuous Galerkin methods. Lect. Notes Comput. Sci. Eng. 104, 3–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Antonietti, P.F., Sarti, M., Verani, M., Zikatanov, L.T.: A uniform additive Schwarz preconditioner for high-order discontinuous Galerkin approximations of elliptic problems. J. Sci. Comput. 70(2), 608–630 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aubin, J.: Approximation des problèmes aux limites non homogènes pour des opérateurs non linéaires. J. Math. Anal. Appl. 30, 510–521 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Babuška, I.: The finite element method with penalty. Math. Comput. 27(122), 221–228 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  20. Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31(137), 45–59 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bassi, F., Botti, L., Colombo, A., Brezzi, F., Manzini, G.: Agglomeration-based physical frame dg discretizations: an attempt to be mesh free. Math. Models Methods Appl. Sci. 24(8), 1495–1539 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bassi, F., Botti, L., Colombo, A., Rebay, S.: Agglomeration based discontinuous Galerkin discretization of the Euler and Navier–Stokes equations. Comput. Fluids 61, 77–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bastian, P., Blatt, M., Scheichl, R.: Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems. Numer. Linear Algebra Appl. 19(2), 367–388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Beirão Da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. M2AN. Math. Model. Numer. Anal. 50(3), 727–747 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Beirão Da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The mimetic finite difference method for elliptic problems, MS&A. Modeling, Simulation and Applications, vol. 11, Springer, Cham (2014)

  29. Bramble, J.: Multigrid Methods. Number 294 in Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow (1993)

    Google Scholar 

  30. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  31. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16(2), 275–297 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15(10), 1533–1551 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cangiani, A., Dong, Z., Georgoulis, E.: \(hp\)-Version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. Submitted for publication (2016)

  34. Cangiani, A., Dong, Z., Georgoulis, E., Houston, P.: \(hp\)–Version discontinuous Galerkin methods on polygonal and polyhedral meshes. 2016, in preparation (2016)

  35. Cangiani, A., Dong, Z., Georgoulis, E., Houston, P.: \(hp\)-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. M2AN. Math. Model. Numer. Anal. 50(3), 699–725 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cangiani, A., Georgoulis, E.H., Houston, P.: \(hp\)-Version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chan, T.F., Xu, J., Zikatanov, L.: An agglomeration multigrid method for unstructured grids. In: Domain decomposition methods, 10 (Boulder, CO, 1997), volume 218 of Contemp. Math., pp. 67–81. American Mathematical Society, Providence, RI (1998)

  38. Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin methods, Springer, Berlin, 2000. Theory, computation and applications. Papers from the 1st International Symposium held in Newport, RI, May 24-26 (1999)

  39. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods, volume 69 of Mathématiques & Applications(Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012)

  40. Fries, T.-P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Georgoulis, E.H.: Inverse-type estimates on \(hp\)-finite element spaces and applications. Math. Comput. 77(261), 201–219 (2008). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hackbusch, W.: Multi-grid methods and applications, volume 4of Springer series in computational mathematics. Springer, Berlin (1985)

  43. Hackbusch, W., Sauter, S.: Composite finite elements for problems containing small geometric details. Part II: implementation and numerical results. Comput. Vis. Sci. 1(4), 15–25 (1997)

    Article  MATH  Google Scholar 

  44. Hackbusch, W., Sauter, S.: Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer. Math. 75(4), 447–472 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, 1st edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  46. Hyman, J., Shashkov, M., Steinberg, S.: The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J. Comput. Phys. 132(1), 130–148 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lions, J.-L.: Problèmes aux limites non homogènes à donées irrégulières: Une méthode d’approximation. In: Numerical Analysis of Partial Differential Equations (C.I.M.E. 2 Ciclo, Ispra, 1967), Edizioni Cremonese, Rome, pp. 283–292 (1968)

  48. Moulitsas, I., Karypis, G.: Mgridgen/Parmgridgen Serial/Parallel Library for Generating Coarse Grids for Multigrid Methods. University of Minnesota, Department of Computer Science/Army HPC Research Center, 2001. Available at: https://www-users.cs.umn.edu/~moulitsa/software.html

  49. Moulitsas, I., Karypis, G.: Multilevel algorithms for generating coarse grids for multigrid methods,. In: Supercomputing 2001 Conference Proceedings (2001)

  50. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Uni. Hamburg 36, 9–15 (1971)

    Article  MATH  Google Scholar 

  51. Olson, L.N., Schroder, J.B.: Smoothed aggregation multigrid solvers for high-order discontinuous Galerkin methods for elliptic problems. J. Comput. Phys. 230(18), 6959–6976 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pavarino, L.F.: Additive Schwarz methods for the \(p\)-version finite element method. Numer. Math. 66(4), 493–515 (1994)

    MathSciNet  MATH  Google Scholar 

  53. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  54. Rivière, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation, volume 35 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008)

  55. Schöberl, J., Melenk, J.M., Pechstein, C., Zaglmayr, S.: Additive Schwarz preconditioning for \(p\)-version triangular and tetrahedral finite elements. IMA J. Numer. Anal. 28(1), 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. Schwab, C.: \(p\)- and \(hp\)-Finite Element Methods. Numerical Mathematics and Scientific Computation: Theory and Applications in Solid and Fluid Mechanics. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  57. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  58. Sukumar, N., Tabarraei, A.: Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61(12), 2045–2066 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. Tabarraei, A., Sukumar, N.: Extended finite element method on polygonal and quadtree meshes. Comput. Methods Appl. Mech. Eng. 197(5), 425–438 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Talischi, C., Paulino, G., Pereira, A., Menezes, I.: Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscipl. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15(1), 152–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Antonietti.

Additional information

Paola F. Antonietti has been partially supported by SIR (Scientific Independence of young Researchers) starting Grant N. RBSI14VT0S “PolyPDEs: Non-conforming polyhedral finite element methods for the approximation of partial differential equations” funded by the Italian Ministry of Education, Universities and Research (MIUR).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonietti, P.F., Houston, P., Hu, X. et al. Multigrid algorithms for \(\varvec{hp}\)-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes. Calcolo 54, 1169–1198 (2017). https://doi.org/10.1007/s10092-017-0223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-017-0223-6

Keywords

Mathematics Subject Classification

Navigation