# Discrete *p*-robust \(\varvec{H}({{\mathrm{div}}})\)-liftings and a posteriori estimates for elliptic problems with \(H^{-1}\) source terms

## Abstract

We establish the existence of liftings into discrete subspaces of \(\varvec{H}({{\mathrm{div}}})\) of piecewise polynomial data on locally refined simplicial partitions of polygonal/polyhedral domains. Our liftings are robust with respect to the polynomial degree. This result has important applications in the a posteriori error analysis of parabolic problems, where it permits the removal of so-called transition conditions that link two consecutive meshes. It can also be used in the a posteriori error analysis of elliptic problems, where it allows the treatment of meshes with arbitrary numbers of hanging nodes between elements. We present a constructive proof based on the a posteriori error analysis of an auxiliary elliptic problem with \(H^{-1}\) source terms, thereby yielding results of independent interest. In particular, for such problems, we obtain guaranteed upper bounds on the error along with polynomial-degree robust local efficiency of the estimators.

## Supplementary material

## References

- 1.Agnelli, J.P., Garau, E.M., Morin, P.: A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM Math. Model. Numer. Anal.
**48**, 1557–1581 (2014)MathSciNetCrossRefzbMATHGoogle Scholar - 2.Ainsworth, M.: A framework for obtaining guaranteed error bounds for finite element approximations. J. Comput. Appl. Math.
**234**, 2618–2632 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 3.Ainsworth, M., Guzmán, J., Sayas, F.-J.: Discrete extension operators for mixed finite element spaces on locally refined meshes. Math. Comp.
**85**, 2639–2650 (2016)MathSciNetCrossRefzbMATHGoogle Scholar - 4.Araya, R., Behrens, E., Rodríguez, R.: A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math.
**105**, 193–216 (2006)MathSciNetCrossRefzbMATHGoogle Scholar - 5.Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are \(p\)-robust. Comput. Methods Appl. Mech. Engrg.
**198**, 1189–1197 (2009)MathSciNetCrossRefzbMATHGoogle Scholar - 6.Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comp.
**77**, 651–672 (2008)MathSciNetCrossRefzbMATHGoogle Scholar - 7.Cohen, A., DeVore, R., Nochetto, R.H.: Convergence rates of AFEM with \(H^{-1}\) data. Found. Comput. Math.
**12**, 671–718 (2012)MathSciNetCrossRefzbMATHGoogle Scholar - 8.Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z.
**265**, 297–320 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 9.Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. Part III. Math. Comp.
**81**, 1289–1326 (2012)MathSciNetCrossRefzbMATHGoogle Scholar - 10.Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comp.
**68**, 1379–1396 (1999)MathSciNetCrossRefzbMATHGoogle Scholar - 11.Dolejší, V., Ern, A., Vohralík, M.: hp-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems. SIAM J. Sci. Comput.
**38**(5), A3220–A3246 (2016)Google Scholar - 12.Ern, A., Vohralík, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal.
**53**, 1058–1081 (2015)MathSciNetCrossRefzbMATHGoogle Scholar - 13.Ern, A., Vohralík, M.: Stable broken \(H^1\) and
(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions, submitted for publication (2016), https://hal.archives-ouvertes.fr/hal-01422204 (**H****preprint**) - 14.Ern, A., Smears, I., Vohralík, M.: Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, submitted for publication (2016), https://hal.archives-ouvertes.fr/hal-01377086 (
**preprint**) - 15.Gaspoz, F., Morin, P., Veeser, A.: A posteriori error estimates with point sources in fractional Sobolev spaces. Numer. Methods Par. Differ. Equ. (2016). doi: 10.1002/num.22065
- 16.Kreuzer, C., Veeser, A.: Private communicationGoogle Scholar
- 17.Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo
**40**, 195–212 (2003)MathSciNetCrossRefzbMATHGoogle Scholar