Numerical validation for systems of absolute value equations
Article
First Online:
- 246 Downloads
- 1 Citations
Abstract
This paper establishes a numerical validation test for solutions of systems of absolute value equations based on the Poincaré–Miranda theorem. In this paper, the Moore–Kioustelidis theorem is generalized for nondifferential systems of absolute value equations. Numerical results are reported to show the efficiency of the new test method.
Keywords
Systems of absolute value equations Poincaré–Miranda theorem Error boundsMathematics Subject Classification
65K05 90C30Notes
Acknowledgments
The authors thank the referee for his/her valuable comments and suggestions which improved the original manuscript of this paper.
References
- 1.Rohn, J.: A theorem of the alternatives for the equation \(Ax + B|x| = b\). Linear Multilinear Algebra 52(6), 421–426 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 2.Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419(2), 359–367 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
- 3.Hu, S.L., Huang, Z.H.: A note on absolute value equations. Optim. Lett. 4(3), 417–424 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
- 4.Mangasarian, O.L.: Absolute value equation solution via concaveminimization. Optim. Lett. 1, 3–8 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
- 5.Prokopyev, O.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44(3), 363–372 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
- 6.Noor, M.A., Iqbal, K.J., Noor, I., Al-Said, E.: On an iterative method for solving absolute value equations. Optim. Lett. 6(5), 1027–1033 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
- 7.Rohn, J.: An algorithm for computing all solutions of an absolute value equation. Optim. Lett. 6(5), 851–856 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
- 8.Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8(1), 35–44 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
- 9.Caccetta, L., Qu, B., Zhou, G.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48(1), 45–58 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
- 10.Wang, H., Liu, H., Cao, S.Y.: A verification method for enclosing solutions of absolute value equations. Collect. Math. 64, 17–38 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
- 11.Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3, 101–108 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
- 12.Zhu, M.Z., Zhang, G.F., Liang, Z.Z.: The nonlinear Hss-like iteration method for absolute value equations (2014). arXiv:1403.7013v2
- 13.Farhad, K.H.: On generalized Traubs method for absolute value equations. J. Optim. Theory Appl. (2015). doi: 10.1007/s10957-015-0712-1
- 14.Iqbal, J., Iqbal, A., Arif, M.: Levenberg–Marquardt method for solving systems of absolute value equations. J. Comput. Appl. Math. 282, 134–138 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
- 15.Miranda, C.: Un’osservazione su un teorema di Brouwer. Bollettino dell’Unione Matematica Italiana 3, 5–7 (1940)zbMATHMathSciNetGoogle Scholar
- 16.Moore, R.E., Kioustelidis, J.B.: A simple test for accuracy of approximate solutions to nonlinear systems. SIAM J. Numer. Anal. 17(4), 521–529 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
- 17.Marco, S.: Steigungen höherer Ordnung zur verifizierten globalen Optimierung. Universitätsverlag Karlsruhe, c/o Universitätsbibliothek, Karlsruhe (2007)Google Scholar
- 18.Alefeld, G.E., Mayer, G.: Interval analysis: theory and applications. J. Comput. Appl. Math. 121, 421–464 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
Copyright information
© Springer-Verlag Italia 2016