Calcolo

, Volume 52, Issue 2, pp 207–231 | Cite as

Explicit multi-frequency symmetric extended RKN integrators for solving multi-frequency and multidimensional oscillatory reversible systems

Article

Abstract

This paper studies explicit multi-frequency symmetric extended Runge–Kutta–Nyström (ERKN) integrators tailored to numerically computing the multi-frequency and multidimensional oscillatory reversible second-order differential equations \(q''(t)+Mq(t)=f\big (q(t)\big )\). We establish the symmetry conditions in a simplified way for multi-frequency ERKN integrators. Five explicit multi-frequency symmetric ERKN integrators are derived based on the simplified symmetry conditions. The arbitrary high-order explicit multi-frequency symmetric ERKN integrators can be achieved by the application of the symmetric composition. The stability and phase properties of the new integrators are discussed. Five numerical experiments are carried out and the numerical results demonstrate the remarkable numerical behavior of the new explicit multi-frequency symmetric integrators when applied to the multi-frequency and multidimensional oscillatory reversible second-order differential equations.

Keywords

Explicit multi-frequency symmetric ERKN integrators Multi-frequency and multidimensional oscillatory systems Reversible systems 

Mathematics Subject Classification (2000)

34C15 65L05 65L06 65L20 65L70 

References

  1. 1.
    Chen, Z., You, X., Shi, W., Liu, Z.: Symmetric and symplectic ERNK methods for oscillatory Hamiltonian systems. Comput. Phys. Commun. 183, 86–98 (2012)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Cohen, D., Hairer, E., Lubich, C.: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT 45, 287–305 (2005)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Fang, Y., Wu, X.: A new pair of explicit ARKN methods for the numerical integration of general perturbed oscillators. Appl. Numer. Math. 57, 166–175 (2007)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Franco, J.M.: Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Franco, J.M.: A 5(3) pair of explicit ARKN methods for the numerical integration of perturbed oscillators. J. Comput. Appl. Math. 161, 283–293 (2003)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    García, A., Martín, P., González, A.B.: New methods for oscillatory problems based on classical codes. Appl. Numer. Math. 42, 141–157 (2002)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1999)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    González, A.B., Martín, P., Farto, J.M.: A new family of Runge–Kutta type methods for the numerical integration of perturbed oscillators. Numer. Math. 82, 635–646 (1999)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin, Heidelberg (2006)Google Scholar
  11. 11.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)MATHGoogle Scholar
  12. 12.
    Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Jimánez, S., Vázquez, L.: Analysis of four numerical schemes for a nonlinear Klein–Gordon equation. Appl. Math. Comput. 35, 61–93 (1990)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Sanz-Serna, J.M., Calvo, M.P.: Numerical Hmiltonian Problem. In: Applied Mathematics and Matematical Computation, vol. 7. Chapman & Hall, London (1994)Google Scholar
  15. 15.
    Stavroyiannis, S., Simos, T.E.: Optimization as a function of the phase-lag order of two-step P-stable method for linear periodic IVPs. App. Numer. Math. 59, 2467–2474 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Tocino, A., Vigo-Aguiar, J.: Symplectic conditions for exponential fitting Runge–Kutta–Nyström methods. Math. Comput. Modell. 42, 873–876 (2005)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Van der Houwen, P.J., Sommeijer, B.P.: Explicit Runge–Kutta(–Nyström) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal. 24, 595–617 (1987)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Van de Vyver, H.: Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems. Comput. Phys. Comm. 173, 115–130 (2005)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Vigo-Aguiar, J., Simos, T.E., Ferrándiz, J.M.: Controlling the error growth in long-term numerical integration of perturbed oscillations in one or more frequencies. Proc. Roy. Soc. Lond. Ser. A 460, 561–567 (2004)CrossRefMATHGoogle Scholar
  20. 20.
    Wang, B., Liu, K., Wu, X.: A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J. Comput. Phys. 243, 210–223 (2013)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Wang, B., Wu, X.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A 376, 1185–1190 (2012)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Wang, B., Wu, X., Xia, J.: Error bounds for explicit ERKN integrators for systems of multi-frequency oscillatory second-order differential equations. Appl. Numer. Math. 74, 17–34 (2013)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Wang, B., Wu, X., Zhao, H.: Novel improved multidimensional Strömer–Verlet formulas with applications to four aspects in scientific computation. Math. Comput. Modell. 57, 857–872 (2013)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Wu, X.: A note on stability of multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems. Appl. Math. Modell. 36, 6331–6337 (2012)CrossRefGoogle Scholar
  25. 25.
    Wu, X., Wang, B.: Multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems. Comput. Phys. Commun. 181, 1955–1962 (2010)CrossRefMATHGoogle Scholar
  26. 26.
    Wu, X., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Wu, X., Wang, B., Xia, J.: Explicit symplectic multidimensional exponential fitting modified Runge–Kutta–Nyström methods. BIT 52, 773–795 (2012)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Wu, X., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Wu, X., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Berlin, Heidelberg (2013)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsQingdao University of Science and TechnologyQingdaoPeople’s Republic of China
  2. 2.Department of MathematicsNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations