Skip to main content
Log in

A kinetic scheme for the one-dimensional open channel flow equations with applications on networks

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, a kinetic method to compute approximative solutions of the one-dimensional open channel flow equations with a varying cross-sectional area and a varying bottom profile is proposed. The scheme preserves the steady states at rest, keeps the water height non-negative and is able to handle dry channel beds. These three properties are essential indicators for the quality of a numerical scheme. The ability of the scheme to treat varying cross-sectional areas along the channel is an important advancement in comparison to previous papers. Further the same equations are considered on a network by coupling the equations at the nodes. The main difference to the majority of common numerical hydraulic models is the usage of the energy equality as coupling condition which seems to be more realistic than conditions based on the water height. Moreover, we set up a numerical method for computing subcritical flow on such networks. Several examples are treated to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akan, A.O.: Open Channel Hydraulics. Elsevier, Amsterdam (2006)

    Google Scholar 

  2. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Pertham, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audusse, E., Bristeau, M.O.: A well-balanced positivity preserving “second-order” scheme for shallow water flows on unstructured meshes. J. Comput. Phys. 206(1), 311–333 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  5. Bourdarias, C., Ersoy, M., Gerbi, S.: A kinetic scheme for pressurised flows in non uniform closed water pipes. Monografias de la Real Academia de Ciencias de Zaragoza 31, 1–20 (2009)

    MathSciNet  Google Scholar 

  6. Bourdarias, C., Gerbi, S., Gisclon, M.: A kinetic formulation for a model coupling free surface and pressurised flows in closed pipes. J. Comput. Appl. Math. 218(2), 522–531 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bryson, S., Epshteyn, Y., Kurganov, A., Petrova, G.: Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system. ESAIM: Math. Model. Numer. Anal. 45(3), 423–446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chanson, H.: The Hydraulics of Open Channel Flow: An Introduction. Elsevier, Amsterdam (2004)

    Google Scholar 

  9. Colombo, R.M., Guerra, G., Herty, M., Sachers, V.: Optimal control in networks of pipes and canals. SIAM J. Control Optim. 48(3), 2032–2050 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colombo, R.M., Herty, M., Sachers, V.: On \(2 \times 2\) conservation laws at a junction. SIAM J. Math. Anal. 40(2), 605–622 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cunge, J.A., Holly, F.M., Verwey, A.: Practical Aspects of Computational River Hydraulics. Pitman, Boston (1980)

    Google Scholar 

  12. Garavello, M., Piccoli, B.: Traffic Flow on Networks: Conservation Law Models. In: AIMS Series on Applied Mathematics, vol 1. American Institute of Mathematical Sciences, Palo Alto (2006)

  13. Goutal, N., Maurel, F. (eds.): Proceedings on the 2nd Workshop on Dam-Break Wave Simulation: Technical, Report HE-43/97/016/B (1997)

  14. Goutal, N., Sainte-Marie, J.: A kinetic interpretation of the section-averaged saint-venant system for natural river hydraulics. Int. J. Numer. Methods Fluids (2010). doi:10.1002/fld.2401

  15. Hu, K., Mingham, C.G., Causon, D.M.: A bore-capturing finite volume method for open-channel flows. Int. J. Numer. Methods Fluids 28, 1241–1261 (1998)

    Article  MATH  Google Scholar 

  16. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. ESAIM Math. Model. Numer. Anal. 36(3), 397–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5(1), 133–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leugering, G., Schmidt, J.P.G.: On the modelling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41(1), 164–180 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Perthame, B., Simeoni, C.: A kinetic scheme for the saint-venant system with a source term. Calcolo 38(4), 201–231 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rowbotham, F.: The Severn Bore. David & Charles, Devon (1983)

    Google Scholar 

  21. Weber, L.J., Schumate, E.D., Mawer, N.: Experiments on flow at a \(90^\circ \) open-channel junction. J. Hydraul. Eng. 127(5), 340–350 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Roggensack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roggensack, A. A kinetic scheme for the one-dimensional open channel flow equations with applications on networks. Calcolo 50, 255–282 (2013). https://doi.org/10.1007/s10092-012-0066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-012-0066-0

Keywords

Mathematics Subject Classification (2000)

Navigation