Skip to main content
Log in

Three-points interfacial quadrature for geometrical source terms on nonuniform grids

Application to finite volume schemes for parameter-dependent differential equations

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

This paper deals with numerical (finite volume) approximations, on nonuniform meshes, for ordinary differential equations with parameter-dependent fields. Appropriate discretizations are constructed over the space of parameters, in order to guarantee the consistency in presence of variable cells’ size, for which L p-error estimates, 1≤p<+∞, are proven.

Besides, a suitable notion of (weak) regularity for nonuniform meshes is introduced in the most general case, to compensate possibly reduced consistency conditions, and the optimality of the convergence rates with respect to the regularity assumptions on the problem’s data is precisely discussed.

This analysis attempts to provide a basic theoretical framework for the numerical simulation on unstructured grids (also generated by adaptive algorithms) of a wide class of mathematical models for real systems (geophysical flows, biological and chemical processes, population dynamics).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arvanitis, C., Delis, A.I.: Behavior of finite volume schemes for hyperbolic conservation laws on adaptive redistributed spatial grids. J. Sci. Comput. 28(5), 1927–1956 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Bentley, L.R., Pinder, G.F.: A least-squares method for solving the mixed form of the groundwater flow equations. Int. J. Numer. Methods Fluids 14, 729–751 (1992)

    Article  MATH  Google Scholar 

  3. Berger, M.J.: On conservation at grid interfaces. SIAM J. Numer. Anal. 24(5), 967–984 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Frontiers in Mathematics. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  5. Bresch, D.: Shallow-water equations and related topics. In: Handbook of Differential Equations: Evolutionary Equations. Elsevier/North-Holland, Amsterdam (2009)

    Google Scholar 

  6. Doering, C.R., Sargsyan, K.V., Smereka, P.: A numerical method for some stochastic differential equations with multiplicative noise. Phys. Lett. A 344, 149–155 (2005)

    Article  MATH  Google Scholar 

  7. Epstein, C.L.: Introduction to the Mathematics of Medical Imaging, 2nd edn. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  8. Fornberg, B.: Generation of finite difference formulas on arbitrary spaced grids. Math. Comput. 51(184), 699–706 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gurtin, M.E., MacCamy, R.C.: Non-linear age-dependent population dynamics. Arch. Ration. Mech. Anal. 54, 281–300 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer Series in Computational Mathematics, vol. 38. Springer, Berlin (2008)

    MATH  Google Scholar 

  11. Hadeler, K.P., Kuttler, C.: Dynamical models for granular matter. Granul. Matter 2, 9–18 (1999)

    Article  Google Scholar 

  12. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I. Nonstiff Problems, 2nd edn. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)

    MATH  Google Scholar 

  13. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1996)

    MATH  Google Scholar 

  14. Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes I. SIAM J. Numer. Anal. 24(2), 279–309 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, New York (2009)

    Book  MATH  Google Scholar 

  16. Hoffman, J.D.: Relationship between the truncation errors of centered finite-difference approximations on uniform and nonuniform meshes. J. Comput. Phys. 46(3), 469–474 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hubbard, M.E.: Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. J. Comput. Phys. 155(1), 54–74 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Katsaounis, Th., Simeoni, C.: First and second order error estimates for the upwind source at interface method. Math. Comput. 74(249), 103–122 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Katsaounis, Th., Perthame, B., Simeoni, C.: Upwinding sources at interfaces in conservation laws. Appl. Math. Lett. 17(3), 309–316 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kružkov, S.N.: First order quasilinear equations with several independent variables. Math. USSR Sb. 10(2), 217–243 (1970)

    Article  Google Scholar 

  21. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  22. Perthame, B., Simeoni, C.: Convergence of the upwind interface source method for hyperbolic conservation laws. In: Hyperbolic Problems: Theory, Numerics, Applications, pp. 61–78. Springer, Berlin (2003)

    Chapter  Google Scholar 

  23. Pike, J.: Grid adaptive algorithms for the solution of the Euler equations on irregular grids. J. Comput. Phys. 71(1), 194–223 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Texts in Applied Mathematics, vol. 37. Springer, Berlin (2007)

    MATH  Google Scholar 

  25. Simeoni, C.: Remarks on the consistency of upwind source at interface schemes on nonuniform grids. J. Sci. Comput. 48(1–3), 333–338 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 3rd edn. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  27. Turkel, E.: Accuracy of schemes with nonuniform meshes for compressible fluid flows. Appl. Numer. Math. 2(6), 529–550 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vasilyev, O.V.: High order finite difference schemes on non-uniform meshes with good conservation properties. J. Comput. Phys. 157(2), 746–761 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, H.F., Anderson, M.P.: Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods. Freeman, San Francisco (1982) (reprinted by Academic Press in 1995)

    Google Scholar 

  30. Wendroff, B., White, A.B., Jr.: A supraconvergent scheme for nonlinear hyperbolic systems. Comput. Math. Appl. 18(8), 761–767 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Simeoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsaounis, T., Simeoni, C. Three-points interfacial quadrature for geometrical source terms on nonuniform grids. Calcolo 49, 149–176 (2012). https://doi.org/10.1007/s10092-011-0049-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-011-0049-6

Keywords

Mathematics Subject Classification (2000)

Navigation