Skip to main content
Log in

Efficient numerical solution of Neumann problems on complicated domains

  • Published:
CALCOLO Aims and scope Submit manuscript

Abstract

We consider elliptic partial differential equations with Neumann boundary conditions on complicated domains. The discretization is performed by composite finite elements.

The a priori error analysis typically is based on precise knowledge of the regularity of the solution. However, the constants in the regularity estimates possibly depend critically on the geometric details of the domain and the analysis of their quantitative influence is rather involved.

Here, we consider a polyhedral Lipschitz domain Ω with a possibly huge number of geometric details ranging from size O(ε) to O(1). We assume that Ω is a perturbation of a simpler Lipschitz domain Ω. We prove error estimates where only the regularity of the partial differential equation on Ω is needed along with bounds on the norm of extension operators which are explicit in appropriate geometric parameters.

Since composite finite elements allow a multiscale discretization of problems on complicated domains, the linear system which arises can be solved by a simple multi-grid method. We show that this method converges at an optimal rate independent of the geometric structure of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. Bank, R., Smith, R.: An algebraic multilevel multigraph algorithm. SIAM J. Sci. Comput. 23, 1572–1592 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • 2. Bank, R., Xu, J.: A hierarchical basis multigrid method for unstructured grids. In: Hackbusch, W., Wittum, G. (eds.): Fast solvers for flow problems. Braunschweig: Vieweg 1995, pp. 1–13

  • 3. Bank, R., Xu, J.: An algorithm for coarsening unstructured meshes. Numer. Math. 73, 1–36 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • 4. Braess, D.: Towards algebraic multigrid for elliptic problems of second order. Computing 55, 379–393 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • 5. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. New York: Springer 1994

  • 6. Chan, T.F., Smith, B.F.: Domain decomposition and multi-grid algorithms for elliptic problems on unstructured meshes. Electron. Trans. Numer. Anal. 2, 171–182 (1994)

    MATH  MathSciNet  Google Scholar 

  • 7. Chan, T.F., Xu, J., Zikatanov, L.: An agglomeration multigrid method for unstructured grids. In: Mandel, J. et al. (eds.): Domain decomposition methods. 10 (Contemporary. Mathematics 218) Providence, RI: AMS 1998, pp. 67–81 67–81

  • 8. Feuchter, D., Heppner, I., Sauter, S., Wittum, G.: Bridging the gap between geometric and algebraic multi-grid methods. Comput. Vis. Sci. 6, 1–13 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • 9. Griebel, M., Knapek, S.: A multigrid-homogenization method. In: Helmig, R. et al. (eds.): Modeling and computation in environmental sciences. (Notes on Numerical Fluid Mechanics 59) Braunschweig: Vieweg 1997, pp. 187–202

  • 10. Grisvard, P.: Elliptic problems in nonsmooth domains. (Monographs and Studies in Mathematics 21) Boston: Pitman 1985

  • 11. Hackbusch, W.: Multigrid methods and applications. Berlin: Springer 1985 (2nd edition 2003)

  • 12. Hackbusch, W.: Elliptic differential equations. Theory and numerical treatment. (Springer Series in Computational Mathematics 18) Berlin: Springer 1992

  • 13. Hackbusch, W., Sauter, S.: Composite finite elements for problems containing small geometric details. II. Implementation and numerical results. Comput. Vis. Sci. 1, 15–25 (1997)

    MATH  Google Scholar 

  • 14. Kornhuber, R., Yserentant, H.: Multilevel methods for elliptic problems on domains not resolved by the coarse grid. In: Keyes, D.E., Xu, J. (eds.): Domain decomposition methods in scientific and engineering computing. (Contemporay Mathematics 180) Providence, RI: AMS 1994, pp. 49–60

  • 15. Mandel, J., Brezina, M., Vaněk, P.: Energy optimization of algebraic multigrid bases. Computing 62, 205–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • 16. Maz'ja, V.G.: Sobolev spaces. Berlin: Springer 1985

  • 17. McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge: Cambridge Univ. Press 2000

  • 18. Oleĭnik, O., Shamaev, A., Yosifian, G.: Mathematical problems in elasticity and homogenization. Amsterdam: North-Holland 1992

  • 19. Ruge, J., Stüben, K.: Algebraic multigrid. In: McCormick, S. (ed.): Multigrid methods. Philadelphia: SIAM 1987, pp. 73–130

  • 20. Sauter, S.A., Warnke, R.: Extension operators and approximation on domains containing small geometric details. East-West J. Numer. Math. 7, 61–77 (1999)

    MATH  MathSciNet  Google Scholar 

  • 21. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • 22. Scott, L.R., Zhang, S.: Higher dimensional nonnested multigrid methods. Math. Comp. 58, 457–466 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • 23. Stahn, N.: Composite finite elements and multi-grid. Dissertation. Zürich: Institut für Mathematik, Universität Zürich 2006

  • 24. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton: Princeton Univ. Press 1970

  • 25. Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56, 179–196 (1996)

    Article  MathSciNet  Google Scholar 

  • 26. Warnke, R.: Fortsetzungsoperatoren auf perforierten Gebieten. Diplomarbeit. Kiel: Mathematisches Seminar, Universität Kiel 1997

  • 27. Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56, 215–235 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • 28. Yserentant, H.: Coarse grid spaces for domains with a complicated boundary. Numer. Algorithms 21, 387–392 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicaise, S., Sauter, S.A. Efficient numerical solution of Neumann problems on complicated domains. Calcolo 43, 95–120 (2006). https://doi.org/10.1007/s10092-006-0118-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-006-0118-4

Navigation