Shear strength in the vertical use direction
The schematic diagram of shear force in cross section A–A′ caused by the moment M in the vertical use direction for n layers LVL is shown in Fig. 1. Mi (i = 1,...,n) is supposed as the bending moment in the ith element, veneer with adhesive in other words, composing LVL. The sum of Mi makes M loaded to LVL. Suppose the shear force caused to ith element and LVL are Qi and QV, respectively, we can get the following equation:
$${Q_i}=\frac{{{E_i}{I_i}}}{{{{(EI)}_{\text{V}}}}}{Q_{\text{V}}}\quad (i=1, \ldots ,n)$$
(1)
where Ei is MOE of ith element, Ii is the moment of inertia of ith element, (EI)V is the stiffness of LVL in the vertical use direction. Suppose the width and thickness of ith element are b and t, respectively, Eq. (1) is transformed to Eq. (2).
$${Q_i}=\frac{{{E_i}}}{{\sum\limits_{{k=1}}^{n} {{E_k}} }}{Q_{\text{V}}}\quad (i=1, \ldots ,n)$$
(2)
The maximum shear stress of ith element and LVL are shown as \(\frac{{3{Q_i}}}{{2tb}}\) and \(\frac{{3{Q_{\text{V}}}}}{{2ntb}}\), respectively. Suppose ith element and LVL fails at these stresses, we can get the following equation:
$$\frac{{2tb{\tau _i}}}{3}=\frac{{{E_i}}}{{\sum\limits_{{k=1}}^{n} {{E_k}} }}\frac{{2ntb{\tau _{\text{V}}}}}{3}\quad (i=1, \ldots ,n)$$
(3)
where \({\tau _i}\) is the shear strength of ith element and \({\tau _{\text{V}}}\) is the shear strength of LVL. Equation (3) is transformed to the following equation:
$${\tau _{\text{V}}}=\frac{{\sum\limits_{{k=1}}^{n} {{E_k}} }}{n}\frac{{{\tau _i}}}{{{E_i}}}\quad (i=1, \cdots ,n)$$
(4)
Then suppose the failure criterion of LVL is that one element fails first by shear stress, we can show shear strength of LVL by the following equation from Eq. (4).
$${\tau _{\text{V}}}=\hbox{min} \left\{ {{E_{{\text{V}}\left( {{\text{LVL}}} \right)}}\left( {\frac{{{\tau _i}}}{{{E_i}}}} \right)} \right\}\quad (i=1, \ldots ,n)$$
(5)
where Ev(LVL) is MOE of LVL in the vertical use direction, min{*} is the smallest value in the braces.
Shear strength in the horizontal use direction
The schematic diagram of shear force in cross section A–A′ caused by the moment M in the horizontal use direction for n layers LVL is shown in Fig. 2. By the elementary theory of beam, the shear stress τ(s) of ith element at the arbitrary position s ((i − 1)t ≦ s ≦ it) from the upper side of LVL is shown by the following equation:
$$\tau {(s)_i}=\frac{{{Q_{\text{H}}}}}{{{{(EI)}_{\text{H}}}}}\left\{ {\int\limits_{s}^{{it}} {{E_i}(y - \lambda ){\text{d}}y} +\sum\limits_{{j=i+1}}^{n} {\,\int\limits_{{(j - 1)t}}^{{jt}} {{E_j}(y - \lambda ){\text{d}}y} } } \right\}$$
where s ((i − 1)t ≦ s ≦ it) is located in the ith element, Ei is MOE of ith element, (EI)H is stiffness of LVL in the horizontal use direction and λ is the distance of neutral axis of LVL from the upper side of LVL. Suppose the average shear stress of ith element is \({\bar {\tau }_i}\), we can get the following equation:
$$\begin{gathered} {{\bar {\tau }}_i}=\frac{1}{{it - (i - 1)t}}\int\limits_{{(i - 1)t}}^{{it}} {\tau {{(s)}_i}{\text{d}}s} \hfill \\ \quad =\frac{{{Q_{\text{H}}}}}{{t{{(EI)}_{\text{H}}}}}\left\{ {{E_i}\int\limits_{{(i - 1)t}}^{{it}} {\int\limits_{s}^{{it}} {(y - \lambda ){\text{d}}y{\text{d}}s} } +t\sum\limits_{{j=i+1}}^{n} {{E_j}\int\limits_{{(j - 1)t}}^{{it}} {(y - \lambda ){\text{d}}y} } } \right\} \hfill \\ \end{gathered}$$
(6)
Then the first integral term in the right side of Eq. (6) is calculated into the following equation:
$$\begin{gathered} \int\limits_{{(i - 1)t}}^{{it}} {\int\limits_{s}^{{it}} {(y - \lambda ){\text{d}}y{\text{d}}s} } =\int\limits_{{(i - 1)t}}^{{it}} {\left( { - \frac{{{s^2}}}{2}+\lambda s+\frac{{{i^2}{t^2}}}{2} - \lambda it} \right){\text{d}}s} \hfill \\ \quad \quad \quad \quad \quad \quad \;\;\;=\frac{{i{t^3}}}{2} - \frac{{{t^3}}}{6} - \frac{{\lambda {t^2}}}{2} \hfill \\ \end{gathered}$$
(7)
And then the second integral term in the right side of Eq. (6) is calculated into the following equation:
$$\int\limits_{{(j - 1)t}}^{{it}} {(y - \lambda ){\text{d}}y} =\left( {jt - \lambda - \frac{t}{2}} \right)t$$
(8)
Finally, Eq. (6) is terminated to the following equation from Eqs. (7) and (8).
$${\bar {\tau }_i}=\frac{{{Q_{\text{H}}}}}{{{{(EI)}_{\text{H}}}}}\left\{ {{E_i}\left( {\frac{{it}}{2} - \frac{t}{6} - \frac{\lambda }{2}} \right)+\sum\limits_{{j=i+1}}^{n} {{E_j}\left( {jt - \lambda - \frac{t}{2}} \right)} } \right\}$$
(9)
Then suppose the shear strength of LVL is \({\tau _{\text{H}}}\) and \({\tau _{\text{H}}}\) is calculated by the equation \({\tau _{\text{H}}}=\frac{{3{Q_{\text{H}}}}}{{2ntb}}\) when the ith element is failed by the shear stress \({\bar {\tau }_i}\), we can get the following equation:
$${\tau _{\text{H}}}=\frac{{3{{\bar {\tau }}_i}}}{{2n{t^2}b}}\frac{{{{(EI)}_{\text{H}}}}}{{{E_i}\left( {\frac{{it}}{2} - \frac{t}{6} - \frac{\lambda }{2}} \right)+\sum\limits_{{j=i+1}}^{n} {{E_j}\left( {jt - \lambda - \frac{t}{2}} \right)} }}$$
(10)
Now suppose the failure criterion of LVL is that one element fails first by shear stress, we can get the following equation from Eq. (10).
$${\tau _{\text{H}}}=\hbox{min} \left\{ {\frac{{3{{\bar {\tau }}_i}}}{{2n{t^2}b}}\frac{{{{(EI)}_{\text{H}}}}}{{{E_i}\left( {\frac{{it}}{2} - \frac{t}{6} - \frac{\lambda }{2}} \right)+\sum\limits_{{j=i+1}}^{n} {{E_j}\left( {jt - \lambda - \frac{t}{2}} \right)} }}} \right\}\quad (i=1, \ldots ,n)$$
(11)