Impact of thermal modification on color and chemical changes of spruce and oak wood

  • Adam Sikora
  • František Kačík
  • Milan Gaff
  • Veronika Vondrová
  • Tatiana Bubeníková
  • Ivan Kubovský
Original Article
  • 51 Downloads

Abstract

Thermal modification of wood is an environment-friendly alternative method for improving several properties of wood without the use of chemicals. This paper deals with the examination of color and chemical changes in spruce (Picea abies L.) and oak wood (Quercus robur F.) that occur due to thermal treatment. The thermal modification was performed at 160, 180, and 210 °C according to thermowood process. The color changes were measured by the spectrophotometer and described in the L*a*b* color system. Chemical changes were examined by wet chemistry methods, infrared spectroscopy and liquid chromatography. During the experiment, oak samples showed smaller color changes than spruce samples at all temperature values. During thermal modification, the content of cellulose, lignin, and extractives increases; however, the hemicellulose content drops by 58.85% (oak) and by 37.40% (spruce). In addition to deacetylation, new carbonyl and carboxyl groups are formed as a result of oxidation. Bonds in lignin (mainly β-O-4) and methoxyl groups are cleaved, and lignin is condensed at higher temperatures.

Keywords

Thermal modification Spruce Oak Color changes Chemical changes 

Notes

Acknowledgements

The authors are grateful for the support of “Advanced research supporting the forestry and wood-processing sector´s adaptation to global change and the 4th industrial revolution”, no. CZ.02.1.01/0.0/0.0/16_019/0000803 financed by OP RDE and by the of the University-wide Internal Grant Agency (CIGA) of the Faculty of Forestry and Wood Sciences, project no. 2016-4309 (70%) and by the Slovak Research and Development Agency under the contract no. APVV-16-0326 (30%).

References

  1. 1.
    Saka S (1993) Structure and chemical composition of wood as a natural composite material. In Shiraishi N, Kajita H, Norimoto M (eds). Recent research on wood and wood-based materials: current Japanese materials research, vol 11. Elsevier, Barking, pp 1–20. ISBN 0-444-81691-7Google Scholar
  2. 2.
    Montero C, Clair B, Alméras T, Van Der Lee A, Gril J (2012) Relationship between wood elastic strain under bending and cellulose crystal strain. Compos Sci Technol 72(2):175–181CrossRefGoogle Scholar
  3. 3.
    Lee KY, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27CrossRefGoogle Scholar
  4. 4.
    Sorieul M, Dickson A, Hill SJ, Pearson H (2016) Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials 9(8):618–654CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Boonstra M (2008) A two-stage thermal modification of wood. Ph.D. dissertation in cosupervision Ghent University (Ghent Belgium) and Université Henry Poincaré, Nancy, FranceGoogle Scholar
  6. 6.
    Hon DNS, Shiraishi N (2001) Wood and cellulosic chemistry. Marcel Dekker, Inc., New York, pp 385–442. ISBN 0-8247-0024-4Google Scholar
  7. 7.
    Fengel D, Wegener G (2003) Wood: chemistry, ultrastructure, reactions. Kessel Verlag, Remagen, pp 26–65. ISBN 3-935638-39-6Google Scholar
  8. 8.
    Hakkou M, Pétrissans M, Zoulalian A, Gérardin P (2005) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stabil 89(1):1–5CrossRefGoogle Scholar
  9. 9.
    Chen Y, Fan Y, Gao J, Stark NM (2012) The effect of heat treatment on the chemical and color change of black locust (Robinia pseudoacacia) wood flour: a review. Bioresources 7(1):1157–1170Google Scholar
  10. 10.
    Lovrić A, Zdravković V, Furtula M (2014) Influence of thermal modification on color of poplar (Populus × euramericana) rotary cut veneer. Wood Res Slovak 59(2):661–670Google Scholar
  11. 11.
    Mitani A, Barboutis I (2013) Heat treatment effect on color changes of beech (Fagus sylvatica) wood. Pro Ligno 9(4):140–145Google Scholar
  12. 12.
    Bekhta P, Niemz P (2003) Effect of high temperature on the change of color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5):539–546CrossRefGoogle Scholar
  13. 13.
    Kamdem PD, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Holz als Roh Werkstoff 60(1):1–6CrossRefGoogle Scholar
  14. 14.
    Kačíková D, Kačík F, Čabalová I, Ďurkovič J (2013) Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood. Bioresour Technol 144:669–674CrossRefPubMedGoogle Scholar
  15. 15.
    Candelier K, Thevenon MF, Petrissans A, Dumarcay S, Gerardin P, Petrissans M (2016) Control of wood thermal treatment and its effects on decay resistance—a review. Ann For Sci 73(3):1–13CrossRefGoogle Scholar
  16. 16.
    Zawadzki J, Gawron J, Antczak A, Klosinska T, Radomski A (2016) The influence of heat treatment on the physico-chemical properties of pinewood (Pinus sylvestris L.). Drewno 59(196):49–57Google Scholar
  17. 17.
    Reinprecht L (2016) Wood deterioration, protection and maintenance. Wiley, New York. ISBN 9781119106531CrossRefGoogle Scholar
  18. 18.
    Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. Bioresources 4(1):370–404Google Scholar
  19. 19.
    Tolvaj L, Papp G, Varga D, Lang E (2012) Effect of steaming on the colour change of softwoods. Bioresources 7(3):2799–2808Google Scholar
  20. 20.
    Militz H (2002) Thermal treatment of wood: European processes and their background. The International Group on Wood Preservation, Document No. IRG/WP 02–40241Google Scholar
  21. 21.
    Boonstra MJ, Acker VJ, Tjeredsma BF, Kegel EV (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann For Sci 64(7):679–690CrossRefGoogle Scholar
  22. 22.
    Pelit H, Yalc M (2017) Resistance of mechanically densified and thermally post-treated pine sapwood to wood decay fungi. J Wood Sci 63:514–522CrossRefGoogle Scholar
  23. 23.
    EN 113 (1996) Wood preservatives. Test method for determining the protective effectiveness against wood destroying basidiomycetes. Determination of the toxic values, European Committee for Standardization, BrusselsGoogle Scholar
  24. 24.
    Cividini R, Travan L, Allegretti O (2007) White beech: a tricky problem in the drying process Procs. In: International scientific conference on hardwood processing (ISCHP), Québec City, Canada, 24–26 September, pp 135–140Google Scholar
  25. 25.
    ISO 11664-4 (2008) Colorimetry—part 4: CIE 1976 L*a*b* colour space. International Organization for Standardization, LondonGoogle Scholar
  26. 26.
    ISO 11664-6 (2013) Colorimetry—part 6: CIEDE2000 colour-difference formula. International Organization for Standardization, LondonGoogle Scholar
  27. 27.
    Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of extractives in biomass: laboratory analytical procedure (LAP). NREL/TP-510-42619. National Renewable Energy Laboratory, GoldenGoogle Scholar
  28. 28.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP). NREL/TP-510-42618. National Renewable Energy Laboratory, GoldenGoogle Scholar
  29. 29.
    Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122(35):35–34Google Scholar
  30. 30.
    Seifert VK (1956) About a new method for rapid determination of pure cellulose (in German). Das Papier 10(13):301–306Google Scholar
  31. 31.
    Barcík Š, Gašparík M, Razumov EY (2015) Effect of temperature on the color changes of wood during thermal modification. Cell Chem Technol 49(9–10):789–798Google Scholar
  32. 32.
    Salca EA, Kobori H, Inagaki T, Kojima Y, Suzuki S (2016) Effect of heat treatment on colour changes of black alder and beech veneers. J Wood Sci 62:297–304CrossRefGoogle Scholar
  33. 33.
    Nuopponen M, Vuorinen T, Jamsa S, Viitaniemi P (2004) Thermal modification in softwood studied by FT-IR and UV resonance Raman spectroscopies. J Wood Chem Technol 24(1):13–26CrossRefGoogle Scholar
  34. 34.
    Hill CA (2006) Wood modification: chemical, thermal and other processes. vol 5. Wiley, New YorkCrossRefGoogle Scholar
  35. 35.
    Shimizu K, Teratani F, Hashi M, Miyazaki K (1972) Effect of the thermal treatment on wood hemicelluloses. VI. Studies on the thermal analysis of arabinogalactan, and O-acetyl-and deacetylated-galactoglucomannans. Mokuzai Gakkaishi 18(2):79–84Google Scholar
  36. 36.
    Zaman A, Alén R, Kotilainen R (2000) Thermal behaviour of Scots pine (Pinus sylvestris) and Silver birch (Betula pendula) at 200–230 °C. Wood Fiber Sci 32(2):138–143Google Scholar
  37. 37.
    Čabalová I, Kačík F, Kačíková D, Oravec M (2014) The influence of cross-section of spruce wood beams on saccharides changes at thermal loading. Acta Facultatis Xylologiae 56(2):81–86Google Scholar
  38. 38.
    Esteves B, Velez Marques A, Domingos I, Pereira H (2013) Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas-Cienc Tecnol 15(2):245–258Google Scholar
  39. 39.
    Özgenç Ö, Durmaz S, Boyaci IH, Eksi-Kocak H (2017) Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochim Acta A 171:395–400CrossRefGoogle Scholar
  40. 40.
    Solár R, Reinprecht L, Kačík F, Melcer J, Horský D (1987) Comparison of some physico-chemical and chemical properties of carbohydrate and lignin part of contemporary and subfossile oak wood. Cell Chem Technol 21(5):513–524Google Scholar
  41. 41.
    González-Peña MM, Curling SF, Hale MD (2009) On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polym Degrad Stabil 94(12):2184–2193CrossRefGoogle Scholar
  42. 42.
    Popescu MC, Froidevaux J, Navi P, Popescu CM (2013) Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. J Mol Struct 1033:176–186CrossRefGoogle Scholar
  43. 43.
    Li MY, Cheng SC, Li D, Wang SN, Huang AM, Sun SQ (2015) Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chinese Chem Lett 26(2):221–225CrossRefGoogle Scholar
  44. 44.
    Kačík F, Kubovský I (2011) Chemical changes of beech wood due to CO2 laser irradiation. J Photoch Photobiol A 222(1):105–110CrossRefGoogle Scholar
  45. 45.
    Čabalová I, Kačík F, Lagaňa R, Výbohová E, Bubeníková T, Čaňová I, Ďurkovič J (2018) Effect of thermal treatment on the chemical, physical, and mechanical properties of Pedunculate oak (Quercus robur L.) wood. Bioresources 13(1):157–170Google Scholar

Copyright information

© The Japan Wood Research Society 2018

Authors and Affiliations

  • Adam Sikora
    • 1
  • František Kačík
    • 1
    • 2
  • Milan Gaff
    • 1
  • Veronika Vondrová
    • 1
  • Tatiana Bubeníková
    • 2
  • Ivan Kubovský
    • 3
  1. 1.Department of Wood ProcessingCzech University of Life Sciences in PraguePrague 6, SuchdolCzech Republic
  2. 2.Department of Chemistry and Chemical TechnologiesTechnical University in ZvolenZvolenSlovakia
  3. 3.Department of Physics, Electrical Engineering and Applied MechanicsTechnical University in ZvolenZvolenSlovakia

Personalised recommendations