Journal of Wood Science

, Volume 56, Issue 6, pp 507–512 | Cite as

Antihyperglycemic effects of Japanese maple Acer amoenum leaf extract and its constituent corilagin

Note

Abstract

The antihyperglycemic effects of the leaves of Acer amoenum and purification and identification of an active compound were investigated. In screening experiments for α-glucosidase inhibitory activity, methanolic extracts of A. amoenum leaves showed potent inhibitory action. This extract showed antihyperglycemic effects in sucrose-loaded mice. Fractionation of the crude extract gave the active compound corilagin [β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose] by spectroscopic analysis. This is the first report about the possibility of novel utilization of the Japanese maple tree as a source of compounds for prevention or treatment of diabetes mellitus.

Key words

Acer amoenum Diabetes mellitus α-Glucosidase inhibitory effect Japanese maple Corilagin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brend S, Diethelim T (2009) Atherogenesis and atherothrombosis — focus on diabetes mellitus. Best Pract Res Clin Endocrinol Metabol 23:291–303CrossRefGoogle Scholar
  2. 2.
    Foreyt PJ (2005) Need for lifestyle intervention: How to begin. Am J Cardiol 96:11–14CrossRefGoogle Scholar
  3. 3.
    Kawamori R, Tajima N, Iwamoto Y, Kashiwagi A, Shimamoto K, Kaku K (2009) Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet 373:1607–1614CrossRefPubMedGoogle Scholar
  4. 4.
    Li WL, Zheng HC, Buruku J, De ND (2004) Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 92:1–21CrossRefPubMedGoogle Scholar
  5. 5.
    Zareba G, Serradell N, Castaner R, Davis SL, Prous J, Mealy N (2005) Phytotherapies for diabetes. Drugs Future 30:1253–1282CrossRefGoogle Scholar
  6. 6.
    Kim JH, Lee BC, Sim GS, Lee DL, Yun YP, Pyo HB (2005) The isolation and antioxidative effects of vitexin from Acer palmatum. Arch Pharm Res 28:195–202CrossRefPubMedGoogle Scholar
  7. 7.
    Aritomi M (1963) Chemical constituents in Aceraceous plants I. Flavonoid constituents in the leaves of Acer palmatum Thumberg (in Japanese). J Pharm Soc Jpn 83:737–740Google Scholar
  8. 8.
    Ji SB, Saito N, Yokoi M, Shigihara A, Honda T (1992) Galloylcyanidin glycosides from Acer. Phytochemicals 31:655–657CrossRefGoogle Scholar
  9. 9.
    Dahlqvist A (1964) Method for assay of intestinal disaccharidases. Anal Biochem 71:18–25CrossRefGoogle Scholar
  10. 10.
    Wei WX, Pan YJ, Zhang H, Lin CW, Wei TY (2004) Two new compounds from Phyllanthus niruri. Chem Nat Comp 40:460–464CrossRefGoogle Scholar
  11. 11.
    Gao H, Huang YN, Xu PY, Kawabata J (2007) Inhibitory effect of α-glucosidase by fruits of Terminalia chebula Retz. Food Chem 105:628–634CrossRefGoogle Scholar
  12. 12.
    Gutierrez RM, Mitchell S, Solis RV (2008) Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 117:1–27CrossRefPubMedGoogle Scholar
  13. 13.
    Sakaguchi K, Kasuga M (2007) Adverse effect of alpha-glucosidase inhibitors (in Japanese). Nippon Rinsho 65:183–187PubMedGoogle Scholar
  14. 14.
    Sager EP, Hutchinson TC, Croley TR (2005) Foliar phenolics in sugar maple (Acer saccharum) as a potential indicator of tropospheric ozone pollution. Environ Monit Assess 105:419–430CrossRefPubMedGoogle Scholar
  15. 15.
    Aritomi M (1964) Chemical constituents in Aceraceous plants. II. Flavonoid constituents in leaves of Acer carpinifolium Siebold et Zuccarini, A. diabolicum Blume, and A. negundo. J Pharm Soc Jpn 84:360–362Google Scholar
  16. 16.
    Ji SB, Yokoi M, Saito N, Mao LS (1992) Distribution of anthocyanins in Aceraceae leaves. Biochem System Ecol 20:771–781CrossRefGoogle Scholar
  17. 17.
    Miwa I, Okuda J, Horie T, Nakayama M (1986) Inhibition of intestinal α-glucosidase and sugar absorption by flavones. Chem Pharm Bull 34:838–844PubMedGoogle Scholar
  18. 18.
    Shibano M, Kakutani K, Taniguchi M, Yasuda M, Baba K (2008) Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity. J Nat Med 62: 349–353CrossRefPubMedGoogle Scholar
  19. 19.
    Ma X, Wu L, Ito Y, Tian W (2005) Application of preparative highspeed counter-current chromatography for separation of methyl gallate from Acer truncatum Bunge. J Chromatogr A 1076: 212–215CrossRefPubMedGoogle Scholar
  20. 20.
    Abou-Zaid MM, Nozzolillo C, Tonon A, Coppens M, Lombardo A (2008) High-performance liquid chromatography characterization and identification of antioxidant polyphenols in maple syrup. Pharm Biol 46:117–125CrossRefGoogle Scholar
  21. 21.
    Kim HJ, Woo ER, Shin CG, Park HK (1998) A new flavonol glucoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. J Nat Prod 61:145–148CrossRefPubMedGoogle Scholar
  22. 22.
    Gamberucci A, Konta L, Colucci A, Gunti J, Magyar EJ, Mandl J, Banhegyi G, Benedetti A, Csala M (2006) Green tea flavonoids inhibit glucosidase II. Biol Pharmacol 72:640–646CrossRefGoogle Scholar
  23. 23.
    Toda M, Kawabata J, Kasai T (2004) Inhibitory effects of ellagi- and gallotannins on rat intestinal α-glucosidase complex. Biosci Biotechnol Biochem 65:542–547CrossRefGoogle Scholar
  24. 24.
    Qiang H, Bi S, Kai Y (2006) Interactions of gallotannins with proteins, amino acids, phospholipids and sugars. Food Chem 95: 250–254CrossRefGoogle Scholar
  25. 25.
    Shimada T (2006) Salivary proteins as a defense against dietary tannins. J Chem Ecol 32:1149–1163CrossRefPubMedGoogle Scholar
  26. 26.
    Kinoshita S, Inoue Y, Nakama S, Ichiba T, Aniya Y (2007) Antioxidant and hepatoprotective actions of medicinal herb Terminalia catappa L. from Okinawa island and its tannin corilagin. Phytomedicine 14:755–762CrossRefPubMedGoogle Scholar
  27. 27.
    Prasad NK, Yang B, Zhao M, Wei X, Jiang Y, Chen F (2009) High pressure extraction of corilagin from longan (Dimocarpus longan Lour.) fruit pericarp. Sep Pur Tech 70:41–45CrossRefGoogle Scholar
  28. 28.
    Okabe S, Suganuma M, Imayoshi Y, Taniguchi S, Yoshida T, Fujiki H (2001) New TNF-α releasing inhibitors, geraniin and corilagin, in leaves of Acer nikoense, Megusurino-ki. Biol Pharm Bull 24:1145–1148CrossRefPubMedGoogle Scholar
  29. 29.
    Zao L, Zhang SL, Tao JY, Pang R, Jin F, Guo YJ, Dong JH, Ye P, Zhao HY, Zheng GH (2008) Preliminary exploration on antiinflammatory mechanism of corilagin (beta-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose) in vitro. Int Immunopharmacol 8:1059–1064CrossRefGoogle Scholar
  30. 30.
    Cheng JT, Lin TC, Hsu FL (1995) Antihypertensive effect of corilagin in the rat. Can J Physiol Pharmacol 73:1425–1429PubMedGoogle Scholar
  31. 31.
    Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, Tsuchiya T (2004) Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 48:67–73PubMedGoogle Scholar

Copyright information

© The Japan Wood Research Society 2010

Authors and Affiliations

  • Atsushi Honma
    • 1
  • Tomoyuki Koyama
    • 1
  • Kazunaga Yazawa
    • 1
  1. 1.Laboratory of Nutraceuticals and Functional Foods Science, Graduate School of Marine Science and TechnologyTokyo University of Marine Science and TechnologyTokyoJapan

Personalised recommendations