Abstract
Backgroud
Multiple Sclerosis (MS) is a complex and chronic autoimmune disease that affects the central nervous system. Inflammation and demyelination characterize it, which results in a range of neurological impairments. The increasing worldwide occurrence of MS, affecting an estimated 2.8 million individuals in 2020, highlights the urgent requirement for further research to tackle the significant impact it has on individuals and healthcare systems globally.
Objective
In this study, we wanted to explore the complex function of the endoplasmic reticulum (ER) in the origin, development, and resolution of MS, emphasizing its importance in neuroinflammatory illnesses. The ER has become a central focus in comprehending the pathogenesis of MS. Upon reviewing the literature, we observed a lack of thorough analysis that explores the involvement of endoplasmic reticulum stress in multiple sclerosis. Thus, we aimed through this research to examine the correlations between ER stress and its influence on immunological dysregulation, demyelination, and neurodegeneration in MS.
Findings
Based on the latest clinical trials, we suggested theories that explore possible biomarkers linked to ER stress and the unfolded protein response. Identifying molecules that are suggestive of early stages of illness and can serve as prognostic tools for improving our understanding of the heterogeneity of MS and offering novel approaches for managing the disease. Finally, through our comprehensive search, we wanted to offer a plan for future research, suggesting new and creative methods for managing MS and encouraging the creation of specific treatments that aim to reduce the impact of MS on individuals worldwide.
Similar content being viewed by others
Data availability
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
References
Goldenberg MM (2012) Multiple sclerosis review. Pharmacy and therapeutics 37(3):175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351877/
Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van Der Mei I, Wallin M (2020) Rising prevalence of multiple sclerosis worldwide: insights from the atlas of MS. Mult Scler J 26(14):1816–1821. https://doi.org/10.1177/1352458520970841
Shi M, Chai Y, Zhang J, Chen X (2022) Endoplasmic reticulum stress-associated neuronal death and innate immune response in neurological diseases. Front Immunol 12:794580. https://doi.org/10.3389/fimmu.2021.794580
Qi Z, Chen L (2019) Endoplasmic reticulum stress and autophagy. Autophagy: Biology and diseases: Basic Sci 167–77. https://doi.org/10.1007/978-981-15-0602-4_8
Lemus HN, Warrington AE, Rodriguez M (2018) Multiple sclerosis: mechanisms of disease and strategies for myelin and axonal repair. Neurol Clin 36(1):1–1. https://doi.org/10.1016/j.ncl.2017.08.002
Ward M, Goldman MD (2022) Epidemiology and pathophysiology of multiple sclerosis. CONTINUUM: Lifelong Learning Neurology 28(4):988–1005. https://doi.org/10.1212/CON.0000000000001136
Ghasemi N, Razavi S, Nikzad E (2017) Multiple sclerosis: pathogenesis, symptoms, diagnoses, and cell-based therapy. Cell J (Yakhteh) 19(1):1. https://doi.org/10.22074/cellj.2017.4867
Doshi A, Chataway J (2017) Multiple sclerosis, a treatable disease. Clin Med 17(6):530. https://doi.org/10.7861/clinmedicine.17-6-530
Sand IK (2015) Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr Opin Neurol 28(3):193–205. https://doi.org/10.1097/WCO.0000000000000206
Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K (2008) ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 33(1):75–89. https://doi.org/10.1247/csf.07044
Stone S, Lin W (2015) The unfolded protein response in multiple sclerosis. Front Neurosci 9:264. https://doi.org/10.3389/fnins.2015.00264
Lin JH, Walter P, Yen TB (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol Mech Dis 3:399–425. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151434
Bánhegyi G, Baumeister P, Benedetti A, Dong D, Fu Y, Lee AS, Li J, Mao C, Margittai E, Ni MI, Paschen W. Endoplasmic reticulum stress (2007) Ann N Y Acad Sci 1113(1):58–71. https://doi.org/10.1196/annals.1391.007
Dejda A, JOZWIAK-BEBENISTA MA, Nowak JZ (2006) PACAP, VIP, and PHI: effects on AC-, PLC-, and PLD-driven signaling systems in the primary glial cell cultures. Ann N Y Acad Sci 1070(1):220–225. https://doi.org/10.1196/annals.1317.018
Woll KA, Van Petegem F (2022) Calcium-release channels: Structure and function of IP3 receptors and ryanodine receptors. Physiol Rev 102(1):209–268. https://doi.org/10.1152/physrev.00033.2020
Shah SZ, Zhao D, Khan SH, Yang L (2015) Regulatory mechanisms of endoplasmic reticulum resident IP3 receptors. J Mol Neurosci 56:938–948. https://doi.org/10.1007/s12031-015-0551-4
Lim D, Tapella L, Dematteis G, Genazzani AA, Corazzari M, Verkhratsky A (2023) The endoplasmic reticulum stress and unfolded protein response in Alzheimer’s disease: a calcium dyshomeostasis perspective. Ageing Res Rev 87:101914. https://doi.org/10.1016/j.arr.2023.101914
Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5(3):a013169. https://doi.org/10.1101/cshperspect.a013169
Mycko MP, Papoian R, Boschert U, Raine CS, Selmaj KW (2004) Microarray gene expression profiling of chronic active and inactive lesions in multiple sclerosis. Clin Neurol Neurosurg 106(3):223–229. https://doi.org/10.1016/j.clineuro.2004.02.019
Mháille AN, McQuaid S, Windebank A, Cunnea P, McMahon J, Samali A, FitzGerald U (2008) Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J Neuropathol Exp Neurol 67(3):200–211. https://doi.org/10.1097/NEN.0b013e318165b239
Lin W, Popko B (2009) Endoplasmic reticulum stress in disorders of myelinating cells. Nature Neurosci 12(4):379–85. https://doi.org/10.1038/nn.2273
Cunnea P, Mháille AN, McQuaid S, Farrell M, McMahon J, FitzGerald U (2011) Expression profiles of endoplasmic reticulum stress-related molecules in demyelinating lesions and multiple sclerosis. Mult Scler J 17(7):808–818. https://doi.org/10.1177/1352458511399114
Chakrabarty A, Danley MM, LeVine SM (2004) Immunohistochemical localization of phosphorylated protein kinase R and phosphorylated eukaryotic initiation factor-2α in the central nervous system of SJL mice with experimental allergic encephalomyelitis. J Neurosci Res 76(6):822–833. https://doi.org/10.1002/jnr.20125
Cwiklinska H, Mycko MP, Szymanska B, Matysiak M, Selmaj KW (2010) Aberrant stress-induced Hsp70 expression in immune cells in multiple sclerosis. J Neurosci Res 88(14):3102–3110. https://doi.org/10.1002/jnr.22476
Ramana CV, Gil MP, Schreiber RD, Stark GR (2022) Stat1-dependent and-independent pathways in IFN-γ-dependent signaling. Trends Immunol 23(2):96–101. https://doi.org/10.1016/S1471-4906(01)02118-4
Lin Y, Jamison S, Lin W (2012) Interferon-γ activates nuclear factor-κ B in oligodendrocytes through a process mediated by the unfolded protein response. PLoS ONE 7(5):e36408. https://doi.org/10.1371/journal.pone.0036408
Lipton SA, Gu Z, Nakamura T (2007) Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders. Int Rev Neurobiol 82:1–27. https://doi.org/10.1016/S0074-7742(07)82001-0
Dhib-Jalbut S (2007) Pathogenesis of myelin/oligodendrocyte damage in multiple sclerosis. Neurology 68(22 suppl 3):S13-21. https://doi.org/10.1212/01.wnl.0000275228.13012.7b
Florou DT, Mavropoulos A, Dardiotis E, Tsimourtou V, Siokas V, Aloizou AM, Liaskos C, Tsigalou C, Katsiari C, Sakkas LI, Hadjigeorgiou G, Bogdanos DP (2021) Tetracyclines Diminish In Vitro IFN-γ and IL-17-Producing Adaptive and Innate Immune Cells in Multiple Sclerosis. Front Immunol 12:739186. https://doi.org/10.3389/fimmu.2021.739186
Karvandi MS, Sheikhzadeh Hesari F, Aref AR, Mahdavi M (2023) The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation. Front Cell Neurosci 17:1105247. https://doi.org/10.3389/fncel.2023.1105247
Hwang J, Qi L (2018) Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways. Trends Biochem Sci 43(8):593–605. https://doi.org/10.1016/j.tibs.2018.06.005
Hetz C, Saxena S (2017) ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 13(8):477–491. https://doi.org/10.1038/nrneurol.2017.99
Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ (2013) Endoplasmic reticulum dysfunction in neurological disease. The Lancet Neurology 12(1):105–118. https://doi.org/10.1016/S1474-4422(12)70238-7
Smedley GD, Walker KE, Yuan SH (2021) The role of PERK in understanding development of neurodegenerative diseases. Int J Mol Sci 22(15):8146. https://doi.org/10.3390/ijms22158146
Ghemrawi R, Khair M (2020) Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int J Mol Sci 21(17):6127. https://doi.org/10.3390/ijms21176127
Taalab YM, Ibrahim N, Maher A, Hassan M, Mohamed W, Moustafa AA, Salama M, Johar D, Bernstein L (2018) Mechanisms of disordered neurodegenerative function: concepts and facts about the different roles of the protein kinase RNA-like endoplasmic reticulum kinase (PERK). Rev Neurosci 29(4):387–415. https://doi.org/10.1515/revneuro-2017-0071
Martinon F, Glimcher LH (2011) Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum. Curr Opin Immunol 23(1):35–40. https://doi.org/10.1016/j.coi.2010.10.016
Lipson KL, Fonseca SG, Urano F (2006) Endoplasmic reticulum stress-induced apoptosis and autoimmunity in diabetes. Curr Mol Med 6(1):71–7. https://doi.org/10.2174/156652406775574613
Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105(7):891–902. https://doi.org/10.1016/S0092-8674(01)00407-X
Wang HQ, Takahashi R (2007) Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson’s disease. Antioxid Redox Signal 9(5):553–561. https://doi.org/10.1089/ars.2006.1524
Katayama T, Imaizumi K, Manabe T, Hitomi J, Kudo T, Tohyama M (2004) Induction of neuronal death by ER stress in Alzheimer’s disease. J Chem Neuroanat 28(1–2):67–78. https://doi.org/10.1016/j.jchemneu.2003.12.004
Katayama T, Imaizumi K, Honda A, Yoneda T, Kudo T, Takeda M, Mori K, Rozmahel R, Fraser P, George-Hyslop PS, Tohyama M (2001) Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer’s disease-linked presenilin-1 mutations. J Biol Chem 276(46):43446–43454. https://doi.org/10.1074/jbc.M104096200
Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7(6):1153–1163. https://doi.org/10.1016/S1097-2765(01)00264-7
Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102–110. https://doi.org/10.2337/diabetes.52.1.102
Shao Y, Li M, Wu M, Shi K, Fang B, Wang J (2015) FAD-linked Presenilin-1 V97L mutation impede tranport regulation and intracellular Ca(2+) homeostasis under ER stress. Int J Clin Exp Med 8(11):20742–20750
Xu X, Sun B, Zhao C (2023) Poly (ADP-Ribose) Polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 187:106314. https://doi.org/10.1016/j.nbd.2023.106314
Park H, Kam TI, Dawson TM, Dawson VL (2020) Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. Int Rev Cell Mol Biol 353:1–29. https://doi.org/10.1016/bs.ircmb.2019.12.009
Narne P, Pandey V, Simhadri PK, Phanithi PB (2017) Poly (ADP-ribose) polymerase-1 hyperactivation in neurodegenerative diseases: The death knell tolls for neurons. InSeminars Cell Dev Biol 63:154–166. https://doi.org/10.1016/j.semcdb.2016.11.007
Wang X, Ge P (2020) Parthanatos in the pathogenesis of nervous system diseases. Neuroscience 449:241–250. https://doi.org/10.1016/j.neuroscience.2020.09.049
Uddin MA, Akhter MS, Kubra KT, Whitaker KE, Shipley SL, Smith LM, Barabutis N (2021) Hsp90 inhibition protects the brain microvascular endothelium against oxidative stress. Brain disorders 1:100001. https://doi.org/10.1016/j.dscb.2020.100001
Martínez-Ruiz A, Villanueva L, de Orduña CG, López-Ferrer D, Higueras MÁ, Tarín C, Rodríguez-Crespo I, Vázquez J, Lamas S (2005) S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci 102(24):8525–8530. https://doi.org/10.1073/pnas.0407294102
Chen X, Zhang X, Li C, Guan T, Shang H, Cui L, Li XM, Kong J (2013) S-nitrosylated protein disulfide isomerase contributes to mutant SOD1 aggregates in amyotrophic lateral sclerosis. J Neurochem 124(1):45–58. https://doi.org/10.1111/jnc.12046
Hayashi T (2015) Sigma-1 receptor: the novel intracellular target of neuropsychotherapeutic drugs. J Pharmacol Sci 127(1):2–5. https://doi.org/10.1016/j.jphs.2014.07.001
Penke B, Fulop L, Szucs M, Frecska E (2018) The role of sigma-1 receptor, an intracellular chaperone in neurodegenerative diseases. Curr Neuropharmacol 16(1):97–116. https://doi.org/10.2174/1570159X15666170529104323
Wiersma VR, Michalak M, Abdullah TM, Bremer E, Eggleton P (2015) Mechanisms of translocation of ER chaperones to the cell surface and immunomodulatory roles in cancer and autoimmunity. Front Oncol 5:7. https://doi.org/10.3389/fonc.2015.00007
Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, Durchschlag M, Joza N, Pierron G, Van Endert P, Yuan J (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28(5):578–590. https://doi.org/10.1038/emboj.2009.1
McMahon JM, McQuaid S, Reynolds R, FitzGerald UF (2012) Increased expression of ER stress-and hypoxia-associated molecules in grey matter lesions in multiple sclerosis. Mult Scler J 18(10):1437–1447. https://doi.org/10.1177/1352458512438455
Yang J, Hamade M, Wu Q, Wang Q, Axtell R, Giri S, Mao-Draayer Y (2022) Current and future biomarkers in multiple sclerosis. Int J Mol Sci 23(11):5877. https://doi.org/10.3390/ijms23115877
Ní Fhlathartaigh M, McMahon J, Reynolds R, Connolly D, Higgins E, Counihan T, FitzGerald U (2013) Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination. Acta Neuropathol Commun 1(1):1–5. https://doi.org/10.1186/2051-5960-1-37
Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307(5711):935–939. https://doi.org/10.1126/science.1101902
Tsaytler P, Harding HP, Ron D, Bertolotti A (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332(6025):91–94. https://doi.org/10.1126/science.1201396
Stockwell SR, Platt G, Barrie SE, Zoumpoulidou G, Te Poele RH, Aherne GW, Wilson SC, Sheldrake P, McDonald E, Venet M, Soudy C (2012) Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling. PLoS ONE 7(1):e28568. https://doi.org/10.1371/journal.pone.0028568
Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ, Moss K, Stanley TB, Sanders B, Goetz A, Gaul N, Choudhry AE (2013) Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Can Res 73(6):1993–2002. https://doi.org/10.1158/0008-5472.CAN-12-3109
Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE, Fischer PM, Barrett DA, Mallucci GR (2013) Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 5(206):206ra138. https://doi.org/10.1126/scitranslmed.3006767
Wang M, Kaufman RJ (2014) The impact of the unfolded protein response on human disease. J Cell Biol 197:857–867. https://doi.org/10.1083/jcb.201110131
Lin W, Lin Y, Li J, Fenstermaker AG, Way SW, Clayton B, Jamison S, Harding HP, Ron D, Popko B (2013) Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis. J Neurosci 33(14):5980–5991. https://doi.org/10.1523/JNEUROSCI.1636-12.2013
Chiurchiù V, Maccarrone M, Orlacchio A (2014) The role of reticulons in neurodegenerative diseases. NeuroMol Med 16(1):3–15. https://doi.org/10.1007/s12017-013-8271-9
Petratos S, Ozturk E, Azari MF, Kenny R, Young Lee J, Magee KA, Harvey AR, McDonald C, Taghian K, Moussa L, Mun Aui P, Siatskas C, Litwak S, Fehlings MG, Strittmatter SM, Bernard CC (2012) Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain : J Neurol 135(6):1794–1818. https://doi.org/10.1093/brain/aws100
Acknowledgements
None to Declare.
Funding
No funding was received for conducting this research.
Author information
Authors and Affiliations
Contributions
Hamid Noori: Conceptualization, Writing—Review & Editing. Zainab Jamal Alezzah: Conceptualization, Methodology, Writing—Original Draft. Obaid Ur Rehman: Methodology, Writing—Original Draft. Muhammad Idrees: Writing—Original Draft. Mohammad Dheyaa Marsool Marsool: Writing—Original Draft. Khawaja Abdul Rehman: Writing—Original Draft. Krutika Mahendra Gohil: Writing—Original Draft. Sundus Shafat Ahmad: Writing—Original Draft. Tushar Subash: Writing—Original Draft. Kayla Dixon: Writing—Original Draft.
Corresponding author
Ethics declarations
Ethical approval
No ethics committee approval was necessary based on the nature of the manuscript.
Consent to participate
NA.
Consent to publish
NA
Conflict of interest
All authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Noori, H., Alazzeh, Z.J., Rehman, O.U. et al. Endoplasmic reticulum's role in multiple sclerosis, exploring potential biomarkers, and pioneering therapeutic strategies: a comprehensive review of literature. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07766-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10072-024-07766-4