Skip to main content

Advertisement

Log in

Endoplasmic reticulum's role in multiple sclerosis, exploring potential biomarkers, and pioneering therapeutic strategies: a comprehensive review of literature

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Backgroud

Multiple Sclerosis (MS) is a complex and chronic autoimmune disease that affects the central nervous system. Inflammation and demyelination characterize it, which results in a range of neurological impairments. The increasing worldwide occurrence of MS, affecting an estimated 2.8 million individuals in 2020, highlights the urgent requirement for further research to tackle the significant impact it has on individuals and healthcare systems globally.

Objective

In this study, we wanted to explore the complex function of the endoplasmic reticulum (ER) in the origin, development, and resolution of MS, emphasizing its importance in neuroinflammatory illnesses. The ER has become a central focus in comprehending the pathogenesis of MS. Upon reviewing the literature, we observed a lack of thorough analysis that explores the involvement of endoplasmic reticulum stress in multiple sclerosis. Thus, we aimed through this research to examine the correlations between ER stress and its influence on immunological dysregulation, demyelination, and neurodegeneration in MS.

Findings

Based on the latest clinical trials, we suggested theories that explore possible biomarkers linked to ER stress and the unfolded protein response. Identifying molecules that are suggestive of early stages of illness and can serve as prognostic tools for improving our understanding of the heterogeneity of MS and offering novel approaches for managing the disease. Finally, through our comprehensive search, we wanted to offer a plan for future research, suggesting new and creative methods for managing MS and encouraging the creation of specific treatments that aim to reduce the impact of MS on individuals worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Goldenberg MM (2012) Multiple sclerosis review. Pharmacy and therapeutics 37(3):175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351877/

  2. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van Der Mei I, Wallin M (2020) Rising prevalence of multiple sclerosis worldwide: insights from the atlas of MS. Mult Scler J 26(14):1816–1821. https://doi.org/10.1177/1352458520970841

    Article  Google Scholar 

  3. Shi M, Chai Y, Zhang J, Chen X (2022) Endoplasmic reticulum stress-associated neuronal death and innate immune response in neurological diseases. Front Immunol 12:794580. https://doi.org/10.3389/fimmu.2021.794580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qi Z, Chen L (2019) Endoplasmic reticulum stress and autophagy. Autophagy: Biology and diseases: Basic Sci 167–77. https://doi.org/10.1007/978-981-15-0602-4_8

  5. Lemus HN, Warrington AE, Rodriguez M (2018) Multiple sclerosis: mechanisms of disease and strategies for myelin and axonal repair. Neurol Clin 36(1):1–1. https://doi.org/10.1016/j.ncl.2017.08.002

    Article  PubMed  Google Scholar 

  6. Ward M, Goldman MD (2022) Epidemiology and pathophysiology of multiple sclerosis. CONTINUUM: Lifelong Learning Neurology 28(4):988–1005. https://doi.org/10.1212/CON.0000000000001136

  7. Ghasemi N, Razavi S, Nikzad E (2017) Multiple sclerosis: pathogenesis, symptoms, diagnoses, and cell-based therapy. Cell J (Yakhteh) 19(1):1. https://doi.org/10.22074/cellj.2017.4867

  8. Doshi A, Chataway J (2017) Multiple sclerosis, a treatable disease. Clin Med 17(6):530. https://doi.org/10.7861/clinmedicine.17-6-530

    Article  Google Scholar 

  9. Sand IK (2015) Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr Opin Neurol 28(3):193–205. https://doi.org/10.1097/WCO.0000000000000206

    Article  Google Scholar 

  10. Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K (2008) ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 33(1):75–89. https://doi.org/10.1247/csf.07044

    Article  CAS  PubMed  Google Scholar 

  11. Stone S, Lin W (2015) The unfolded protein response in multiple sclerosis. Front Neurosci 9:264. https://doi.org/10.3389/fnins.2015.00264

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin JH, Walter P, Yen TB (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol Mech Dis 3:399–425. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151434

    Article  CAS  Google Scholar 

  13. Bánhegyi G, Baumeister P, Benedetti A, Dong D, Fu Y, Lee AS, Li J, Mao C, Margittai E, Ni MI, Paschen W. Endoplasmic reticulum stress (2007) Ann N Y Acad Sci 1113(1):58–71. https://doi.org/10.1196/annals.1391.007

  14. Dejda A, JOZWIAK-BEBENISTA MA, Nowak JZ (2006) PACAP, VIP, and PHI: effects on AC-, PLC-, and PLD-driven signaling systems in the primary glial cell cultures. Ann N Y Acad Sci 1070(1):220–225. https://doi.org/10.1196/annals.1317.018

  15. Woll KA, Van Petegem F (2022) Calcium-release channels: Structure and function of IP3 receptors and ryanodine receptors. Physiol Rev 102(1):209–268. https://doi.org/10.1152/physrev.00033.2020

    Article  CAS  PubMed  Google Scholar 

  16. Shah SZ, Zhao D, Khan SH, Yang L (2015) Regulatory mechanisms of endoplasmic reticulum resident IP3 receptors. J Mol Neurosci 56:938–948. https://doi.org/10.1007/s12031-015-0551-4

    Article  CAS  PubMed  Google Scholar 

  17. Lim D, Tapella L, Dematteis G, Genazzani AA, Corazzari M, Verkhratsky A (2023) The endoplasmic reticulum stress and unfolded protein response in Alzheimer’s disease: a calcium dyshomeostasis perspective. Ageing Res Rev 87:101914. https://doi.org/10.1016/j.arr.2023.101914

    Article  CAS  PubMed  Google Scholar 

  18. Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5(3):a013169. https://doi.org/10.1101/cshperspect.a013169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mycko MP, Papoian R, Boschert U, Raine CS, Selmaj KW (2004) Microarray gene expression profiling of chronic active and inactive lesions in multiple sclerosis. Clin Neurol Neurosurg 106(3):223–229. https://doi.org/10.1016/j.clineuro.2004.02.019

    Article  PubMed  Google Scholar 

  20. Mháille AN, McQuaid S, Windebank A, Cunnea P, McMahon J, Samali A, FitzGerald U (2008) Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J Neuropathol Exp Neurol 67(3):200–211. https://doi.org/10.1097/NEN.0b013e318165b239

    Article  PubMed  Google Scholar 

  21. Lin W, Popko B (2009) Endoplasmic reticulum stress in disorders of myelinating cells. Nature Neurosci 12(4):379–85. https://doi.org/10.1038/nn.2273

    Article  CAS  PubMed  Google Scholar 

  22. Cunnea P, Mháille AN, McQuaid S, Farrell M, McMahon J, FitzGerald U (2011) Expression profiles of endoplasmic reticulum stress-related molecules in demyelinating lesions and multiple sclerosis. Mult Scler J 17(7):808–818. https://doi.org/10.1177/1352458511399114

    Article  Google Scholar 

  23. Chakrabarty A, Danley MM, LeVine SM (2004) Immunohistochemical localization of phosphorylated protein kinase R and phosphorylated eukaryotic initiation factor-2α in the central nervous system of SJL mice with experimental allergic encephalomyelitis. J Neurosci Res 76(6):822–833. https://doi.org/10.1002/jnr.20125

    Article  CAS  PubMed  Google Scholar 

  24. Cwiklinska H, Mycko MP, Szymanska B, Matysiak M, Selmaj KW (2010) Aberrant stress-induced Hsp70 expression in immune cells in multiple sclerosis. J Neurosci Res 88(14):3102–3110. https://doi.org/10.1002/jnr.22476

    Article  CAS  PubMed  Google Scholar 

  25. Ramana CV, Gil MP, Schreiber RD, Stark GR (2022) Stat1-dependent and-independent pathways in IFN-γ-dependent signaling. Trends Immunol 23(2):96–101. https://doi.org/10.1016/S1471-4906(01)02118-4

    Article  Google Scholar 

  26. Lin Y, Jamison S, Lin W (2012) Interferon-γ activates nuclear factor-κ B in oligodendrocytes through a process mediated by the unfolded protein response. PLoS ONE 7(5):e36408. https://doi.org/10.1371/journal.pone.0036408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lipton SA, Gu Z, Nakamura T (2007) Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders. Int Rev Neurobiol 82:1–27. https://doi.org/10.1016/S0074-7742(07)82001-0

    Article  CAS  PubMed  Google Scholar 

  28. Dhib-Jalbut S (2007) Pathogenesis of myelin/oligodendrocyte damage in multiple sclerosis. Neurology 68(22 suppl 3):S13-21. https://doi.org/10.1212/01.wnl.0000275228.13012.7b

    Article  CAS  PubMed  Google Scholar 

  29. Florou DT, Mavropoulos A, Dardiotis E, Tsimourtou V, Siokas V, Aloizou AM, Liaskos C, Tsigalou C, Katsiari C, Sakkas LI, Hadjigeorgiou G, Bogdanos DP (2021) Tetracyclines Diminish In Vitro IFN-γ and IL-17-Producing Adaptive and Innate Immune Cells in Multiple Sclerosis. Front Immunol 12:739186. https://doi.org/10.3389/fimmu.2021.739186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karvandi MS, Sheikhzadeh Hesari F, Aref AR, Mahdavi M (2023) The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation. Front Cell Neurosci 17:1105247. https://doi.org/10.3389/fncel.2023.1105247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hwang J, Qi L (2018) Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways. Trends Biochem Sci 43(8):593–605. https://doi.org/10.1016/j.tibs.2018.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hetz C, Saxena S (2017) ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 13(8):477–491. https://doi.org/10.1038/nrneurol.2017.99

    Article  CAS  PubMed  Google Scholar 

  33. Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ (2013) Endoplasmic reticulum dysfunction in neurological disease. The Lancet Neurology 12(1):105–118. https://doi.org/10.1016/S1474-4422(12)70238-7

    Article  CAS  PubMed  Google Scholar 

  34. Smedley GD, Walker KE, Yuan SH (2021) The role of PERK in understanding development of neurodegenerative diseases. Int J Mol Sci 22(15):8146. https://doi.org/10.3390/ijms22158146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ghemrawi R, Khair M (2020) Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int J Mol Sci 21(17):6127. https://doi.org/10.3390/ijms21176127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taalab YM, Ibrahim N, Maher A, Hassan M, Mohamed W, Moustafa AA, Salama M, Johar D, Bernstein L (2018) Mechanisms of disordered neurodegenerative function: concepts and facts about the different roles of the protein kinase RNA-like endoplasmic reticulum kinase (PERK). Rev Neurosci 29(4):387–415. https://doi.org/10.1515/revneuro-2017-0071

    Article  CAS  PubMed  Google Scholar 

  37. Martinon F, Glimcher LH (2011) Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum. Curr Opin Immunol 23(1):35–40. https://doi.org/10.1016/j.coi.2010.10.016

    Article  CAS  PubMed  Google Scholar 

  38. Lipson KL, Fonseca SG, Urano F (2006) Endoplasmic reticulum stress-induced apoptosis and autoimmunity in diabetes. Curr Mol Med 6(1):71–7. https://doi.org/10.2174/156652406775574613

    Article  CAS  PubMed  Google Scholar 

  39. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105(7):891–902. https://doi.org/10.1016/S0092-8674(01)00407-X

    Article  CAS  PubMed  Google Scholar 

  40. Wang HQ, Takahashi R (2007) Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson’s disease. Antioxid Redox Signal 9(5):553–561. https://doi.org/10.1089/ars.2006.1524

    Article  CAS  PubMed  Google Scholar 

  41. Katayama T, Imaizumi K, Manabe T, Hitomi J, Kudo T, Tohyama M (2004) Induction of neuronal death by ER stress in Alzheimer’s disease. J Chem Neuroanat 28(1–2):67–78. https://doi.org/10.1016/j.jchemneu.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  42. Katayama T, Imaizumi K, Honda A, Yoneda T, Kudo T, Takeda M, Mori K, Rozmahel R, Fraser P, George-Hyslop PS, Tohyama M (2001) Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer’s disease-linked presenilin-1 mutations. J Biol Chem 276(46):43446–43454. https://doi.org/10.1074/jbc.M104096200

    Article  CAS  PubMed  Google Scholar 

  43. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7(6):1153–1163. https://doi.org/10.1016/S1097-2765(01)00264-7

    Article  CAS  PubMed  Google Scholar 

  44. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102–110. https://doi.org/10.2337/diabetes.52.1.102

    Article  CAS  PubMed  Google Scholar 

  45. Shao Y, Li M, Wu M, Shi K, Fang B, Wang J (2015) FAD-linked Presenilin-1 V97L mutation impede tranport regulation and intracellular Ca(2+) homeostasis under ER stress. Int J Clin Exp Med 8(11):20742–20750

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu X, Sun B, Zhao C (2023) Poly (ADP-Ribose) Polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 187:106314. https://doi.org/10.1016/j.nbd.2023.106314

    Article  CAS  PubMed  Google Scholar 

  47. Park H, Kam TI, Dawson TM, Dawson VL (2020) Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. Int Rev Cell Mol Biol 353:1–29. https://doi.org/10.1016/bs.ircmb.2019.12.009

    Article  CAS  PubMed  Google Scholar 

  48. Narne P, Pandey V, Simhadri PK, Phanithi PB (2017) Poly (ADP-ribose) polymerase-1 hyperactivation in neurodegenerative diseases: The death knell tolls for neurons. InSeminars Cell Dev Biol 63:154–166. https://doi.org/10.1016/j.semcdb.2016.11.007

    Article  CAS  Google Scholar 

  49. Wang X, Ge P (2020) Parthanatos in the pathogenesis of nervous system diseases. Neuroscience 449:241–250. https://doi.org/10.1016/j.neuroscience.2020.09.049

    Article  CAS  PubMed  Google Scholar 

  50. Uddin MA, Akhter MS, Kubra KT, Whitaker KE, Shipley SL, Smith LM, Barabutis N (2021) Hsp90 inhibition protects the brain microvascular endothelium against oxidative stress. Brain disorders 1:100001. https://doi.org/10.1016/j.dscb.2020.100001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martínez-Ruiz A, Villanueva L, de Orduña CG, López-Ferrer D, Higueras MÁ, Tarín C, Rodríguez-Crespo I, Vázquez J, Lamas S (2005) S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci 102(24):8525–8530. https://doi.org/10.1073/pnas.0407294102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen X, Zhang X, Li C, Guan T, Shang H, Cui L, Li XM, Kong J (2013) S-nitrosylated protein disulfide isomerase contributes to mutant SOD1 aggregates in amyotrophic lateral sclerosis. J Neurochem 124(1):45–58. https://doi.org/10.1111/jnc.12046

    Article  CAS  PubMed  Google Scholar 

  53. Hayashi T (2015) Sigma-1 receptor: the novel intracellular target of neuropsychotherapeutic drugs. J Pharmacol Sci 127(1):2–5. https://doi.org/10.1016/j.jphs.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  54. Penke B, Fulop L, Szucs M, Frecska E (2018) The role of sigma-1 receptor, an intracellular chaperone in neurodegenerative diseases. Curr Neuropharmacol 16(1):97–116. https://doi.org/10.2174/1570159X15666170529104323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wiersma VR, Michalak M, Abdullah TM, Bremer E, Eggleton P (2015) Mechanisms of translocation of ER chaperones to the cell surface and immunomodulatory roles in cancer and autoimmunity. Front Oncol 5:7. https://doi.org/10.3389/fonc.2015.00007

    Article  PubMed  PubMed Central  Google Scholar 

  56. Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, Durchschlag M, Joza N, Pierron G, Van Endert P, Yuan J (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28(5):578–590. https://doi.org/10.1038/emboj.2009.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McMahon JM, McQuaid S, Reynolds R, FitzGerald UF (2012) Increased expression of ER stress-and hypoxia-associated molecules in grey matter lesions in multiple sclerosis. Mult Scler J 18(10):1437–1447. https://doi.org/10.1177/1352458512438455

    Article  CAS  Google Scholar 

  58. Yang J, Hamade M, Wu Q, Wang Q, Axtell R, Giri S, Mao-Draayer Y (2022) Current and future biomarkers in multiple sclerosis. Int J Mol Sci 23(11):5877. https://doi.org/10.3390/ijms23115877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ní Fhlathartaigh M, McMahon J, Reynolds R, Connolly D, Higgins E, Counihan T, FitzGerald U (2013) Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination. Acta Neuropathol Commun 1(1):1–5. https://doi.org/10.1186/2051-5960-1-37

    Article  Google Scholar 

  60. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307(5711):935–939. https://doi.org/10.1126/science.1101902

    Article  CAS  PubMed  Google Scholar 

  61. Tsaytler P, Harding HP, Ron D, Bertolotti A (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332(6025):91–94. https://doi.org/10.1126/science.1201396

    Article  CAS  PubMed  Google Scholar 

  62. Stockwell SR, Platt G, Barrie SE, Zoumpoulidou G, Te Poele RH, Aherne GW, Wilson SC, Sheldrake P, McDonald E, Venet M, Soudy C (2012) Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling. PLoS ONE 7(1):e28568. https://doi.org/10.1371/journal.pone.0028568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ, Moss K, Stanley TB, Sanders B, Goetz A, Gaul N, Choudhry AE (2013) Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Can Res 73(6):1993–2002. https://doi.org/10.1158/0008-5472.CAN-12-3109

    Article  CAS  Google Scholar 

  64. Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE, Fischer PM, Barrett DA, Mallucci GR (2013) Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 5(206):206ra138. https://doi.org/10.1126/scitranslmed.3006767

  65. Wang M, Kaufman RJ (2014) The impact of the unfolded protein response on human disease. J Cell Biol 197:857–867. https://doi.org/10.1083/jcb.201110131

    Article  CAS  Google Scholar 

  66. Lin W, Lin Y, Li J, Fenstermaker AG, Way SW, Clayton B, Jamison S, Harding HP, Ron D, Popko B (2013) Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis. J Neurosci 33(14):5980–5991. https://doi.org/10.1523/JNEUROSCI.1636-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chiurchiù V, Maccarrone M, Orlacchio A (2014) The role of reticulons in neurodegenerative diseases. NeuroMol Med 16(1):3–15. https://doi.org/10.1007/s12017-013-8271-9

    Article  CAS  Google Scholar 

  68. Petratos S, Ozturk E, Azari MF, Kenny R, Young Lee J, Magee KA, Harvey AR, McDonald C, Taghian K, Moussa L, Mun Aui P, Siatskas C, Litwak S, Fehlings MG, Strittmatter SM, Bernard CC (2012) Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain : J Neurol 135(6):1794–1818. https://doi.org/10.1093/brain/aws100

    Article  Google Scholar 

Download references

Acknowledgements

None to Declare.

Funding

No funding was received for conducting this research.

Author information

Authors and Affiliations

Authors

Contributions

Hamid Noori: Conceptualization, Writing—Review & Editing. Zainab Jamal Alezzah: Conceptualization, Methodology, Writing—Original Draft. Obaid Ur Rehman: Methodology, Writing—Original Draft. Muhammad Idrees: Writing—Original Draft. Mohammad Dheyaa Marsool Marsool: Writing—Original Draft. Khawaja Abdul Rehman: Writing—Original Draft. Krutika Mahendra Gohil: Writing—Original Draft. Sundus Shafat Ahmad: Writing—Original Draft. Tushar Subash: Writing—Original Draft. Kayla Dixon: Writing—Original Draft.

Corresponding author

Correspondence to Khawaja Abdul Rehman.

Ethics declarations

Ethical approval

No ethics committee approval was necessary based on the nature of the manuscript.

Consent to participate

NA.

Consent to publish

NA

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noori, H., Alazzeh, Z.J., Rehman, O.U. et al. Endoplasmic reticulum's role in multiple sclerosis, exploring potential biomarkers, and pioneering therapeutic strategies: a comprehensive review of literature. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07766-4

Keywords

Navigation