Skip to main content
Log in

MFCC-CNN: A patient-independent seizure prediction model

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Automatic prediction of seizures is a major goal in the field of epilepsy. However, the high variability of Electroencephalogram (EEG) signals in different patients limits the use of prediction models in clinical applications.

Methods

This paper proposes a patient-independent seizure prediction model, named MFCC-CNN, to improve the generalization ability. MFCC-CNN model introduces Mel-Frequency Cepstrum Coefficients (MFCC) features and Linear Predictive Cepstral Coefficients (LPCC) features concentrated in the low frequency region, which contains more detailed information. Convolutional neural network (CNN) is used to construct a seizure prediction model.

Results

Experimental results showed that the proposed model obtained accuracy of 96\(\%\), sensitivity of 92\(\%\), specificity of 84\(\%\) and F1-score of 85\(\%\) for 24 cases in CNHB-MIT dataset. The overall performance of MFCC-CNN model is better than the other models.

Conclusion

MFCC-CNN model does not need to be specifically customized for different patients. As a patient-independent seizure prediction model, it has good generalization ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cook MJ, O’Brien TJ, Berkovic SF, Murphy M, Morokoff A, Fabinyi G, Souza W, Yerra R, Archer J, Litewka L (2013) Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 12(6):563–571

    Article  PubMed  Google Scholar 

  2. Randhawa J, Hrazdil CT, Mcdonald PJ, Illes J (2021) Strategic and principled approach to the ethical challenges of epilepsy monitoring unit triage. J Med Ethics 49(2):81–86

    Article  PubMed  Google Scholar 

  3. Sriram R, Sigride TM, Michele J, Navah EK, Ivan SF, Jacquelyn K, William B, Claus R, Steven S, Tobias L (2014) Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy & Behavior 37:291–307

  4. Vecchio F, Miraglia F, Vollono C, Fuggetta F, Bramanti A, Cioni B, Rossini P (2016) Pre-seizure architecture of the local connections of the epileptic focus examined via graph-theory. Clin Neurophysiol 127(10):3252–3258

    Article  PubMed  Google Scholar 

  5. Dekker PA (2002) Epilepsy: a manual for medical and clinical officers in Africa. World Health Organization (2002)

  6. Yuan S, Zhou W, Chen L (2017) Epileptic seizure prediction using diffusion distance and bayesian linear discriminate analysis on intracranial eeg. Int J Neural Syst 28(1):1750043

    Article  PubMed  Google Scholar 

  7. Bennewitz MF, Saltzman WM (2009) Nanotechnology for delivery of drugs to the brain for epilepsy. Brill 6(2):323–336

    CAS  Google Scholar 

  8. Fisher RS, Ho J (2002) Potential new methods for antiepileptic drug delivery. CNS Drugs 16(9):579–593

    Article  CAS  PubMed  Google Scholar 

  9. Stein AG, Eder HG, Blum DE, Drachev A, Fisher RS (2000) An automated drug delivery system for focal epilepsy. Epilepsy Res 39(2):103–114

    Article  CAS  PubMed  Google Scholar 

  10. Masami F, Hiroshi F, Takayuki O, Nobuhiro T, Hirochika I, Yuichi M, Sadahiro N, Koji K, Takashi S, Toshitaka Y, Takeshi Y, Michiyasu S (2010) Application of focal cerebral cooling for the treatment of intractable epilepsy. Neurol Med Chir (Tokyo) 50(9):839–844

    Article  Google Scholar 

  11. Rothman SM (2009) The therapeutic potential of focal cooling for neocortical epilepsy. Neurotherapeutics 6(2):251–257

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342(5):314–319

    Article  CAS  PubMed  Google Scholar 

  13. Viglione SS, Walsh GO (1975) Proceedings: epileptic seizure prediction. Electroencephalogr Clin Neurophysiol 39(4):435–436

    CAS  PubMed  Google Scholar 

  14. Li S, Zhou W, Yuan Q, Liu Y (2013) Seizure prediction using spike rate of intracranial eeg. IEEE Trans Neural Syst Rehabil Eng 21(6):880–886

    Article  CAS  PubMed  Google Scholar 

  15. Siegel A, Grady CL, Mirsky AF (1982) Prediction of spike-wave bursts in absence epilepsy by eeg power-spectrum signals. Epilepsia 23(1):47–60

    Article  CAS  PubMed  Google Scholar 

  16. Zhu T, Huang L, Tian X (2009) Epileptic seizure prediction by using empirical mode decomposition and complexity analysis of single-channel scalp electroencephalogram. In: International conference on biomedical engineering & informatics. IEEE, pp 1–4

  17. Truong N, Nguyen D, Kuhlmann L, Mr Bonyadi, Yang J, Ippolito S, Kavehei O (2018) Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw 105:104–111

    Article  PubMed  Google Scholar 

  18. Emara H, Elwekeil M, Taha T, El-Fishawy A, El-Rabaie E-S, El-Shafai W, El Banby G, Alotaiby T, Alshebeili S, Abd El-Samie F (2022) Efficient frameworks for eeg epileptic seizure detection and prediction. Annals of Data Science 9:393–428

    Article  Google Scholar 

  19. Ooi CA, Hariharan M, Yaacob S, Lim SC (2012) Classification of speech dysfluencies with mfcc and lpcc features. Expert Syst Appl 39(2):2157–2165

    Article  Google Scholar 

  20. Tirumala SS, Shahamiri SR, Garhwal AS, Wang R (2017) Speaker identification features extraction methods: a systematic review. Expert Syst Appl 90(12):250–271

    Article  Google Scholar 

  21. Mini PP, Thomas T, Gopikakumari R (2021) Eeg based direct speech bci system using a fusion of smrt and mfcc/lpcc features with ann classifier. Biomed Signal Process Control 68(2):102625

    Article  Google Scholar 

  22. Mendonca F, Mostafa S, Garcia AG, Morgado-Dias F, Penzel T (2019) A review of obstructive sleep apnea detection approaches. IEEE J Biomed Health Inform 23(2):825–837

    Article  PubMed  Google Scholar 

  23. Singla C, Singh S (2018) Databases, classifiers for speech emotion recognition: a review. Int J Speech Technol 21(6):93–120

    Google Scholar 

  24. Ajinurseto G, Bakrim L, Islamuddin N (2023) Penerapan metode mel frequency cepstral coefficients pada sistem pengenalan suara berbasis desktop. Infomatek 25(1):11–20

    Article  Google Scholar 

  25. Kamarudin N, Al-Haddad SAR, Khmag A, Hassan A, Hashim S (2016) Analysis on mel frequency cepstral coefficients and linear predictive cepstral coefficients as feature extraction on automatic accents identification. Int J Appl Eng Res 11(11):7301–7307

    Google Scholar 

  26. Saldanha JC, Ananthakrishna T, Pinto R (2014) Vocal fold pathology assessment using mel-frequency cepstral coefficients and linear predictive cepstral coefficients features. J Med Imaging & Health Infor 4(2):168–173

    Article  Google Scholar 

  27. Siddiqui MK, Morales-Menendez R, Huang X, Hussain N (2020) A review of epileptic seizure detection using machine learning classifiers. Brain Informatics 7(1):1–18

    Article  Google Scholar 

  28. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23):215–220

    Article  Google Scholar 

  29. Teixeira C, Direito B, Bandarabadi M, Le Van Quyen M, Valderrama M, Schelter B, Schultz-Bonhage A, Navarro V, Sales F, Dourado A (2014) Epileptic seizure predictors based on computational intelligence techniques: a comparative study with 278 patients. Comput Methods Programs Biomed 114:324–336

    Article  Google Scholar 

  30. Kiral I, Roy S, Nurse E, Mashford B, Karoly P, Carroll T, Payne D, Saha S, Baldassano S, O’Brien T, Grayden D, Cook M, Freestone D, Harrer S (2017) Epileptic seizure prediction using big data and deep learning: toward a mobile system. EBioMedicine 27:103–111

    Article  Google Scholar 

  31. Affes A, Mdhaffar A, Triki C, Jmaiel M, Freisleben B (2022) Personalized attention-based eeg channel selection for epileptic seizure prediction. Expert Syst Appl 206(4):117733

    Article  Google Scholar 

  32. Fei K, Wang W, Yang Q, Tang S (2017) Chaos feature study in fractional fourier domain for preictal prediction of epileptic seizure. Neurocomputing 249(2):290–298

  33. Tsiouris K, Pezoulas V, Koutsouris D, Zervakis M, Fotiadis D (2017) Discrimination of preictal and interictal brain states from long-term eeg data. In: 2017 IEEE 30th International symposium on computer-based medical systems (CBMS). IEEE, pp 318–323

Download references

Author information

Authors and Affiliations

Authors

Contributions

Fan Zhang: Conceptualization, Methodology, Formal analysis, Software, Writing-original draft preparation, Writing-review and editing. Boyan Zhang: Formal analysis, Validation, Writing-original draft preparation. Siyuan Guo: Methodology, Software, Validation. Xinhong Zhang: Conceptualization, Methodology, Writing-review and editing.

Corresponding author

Correspondence to Xinhong Zhang.

Ethics declarations

Ethics approval

Approval by Ethic Committee was not required as the data set used in this retrospective study came from a publicly accessible database.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Informed consent

was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhang, B., Guo, S. et al. MFCC-CNN: A patient-independent seizure prediction model. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07718-y

Keywords

Navigation