Skip to main content

Advertisement

Log in

Safety and neutralization antibody levels of inactivated SARS-CoV-2 vaccine in adult patients with Myasthenia Gravis: a prospective observational cohort study

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract  

Background and objectives

Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction. No cohort study has investigated the efficacy of inactivated vaccines in patients with MG.

Materials and methods

This prospective observational cohort study included healthy controls (HCs) and patients with MG with or without immunosuppressive treatment. Vaccination occurred between May and December 2021. Patients with MG were subjected to a clinical scale assessment for disease severity. The neutralization antibodies (Nabs) levels were measured in all participants using the pseudovirus neutralization assay.

Results

Twenty-one patients (Female/Male:10/11); age median [interquartile range (IQR)]: 43 [30, 56]) were included in this study. Two patients (2/21) were lost during follow-up after enrollment. No sustained vaccine-related adverse effects occurred in any visit of patients with MG. No exacerbation of MG was observed. Acetylcholine receptor antibody (AChR-Ab) levels showed no statistically significant changes between the first and second visit (median [IQR]: 2.22 [0.99, 2.63] nmol/L vs. 1.54 [1.07, 2.40] nmol/L, p = 0.424). However, levels of AChR-Ab decreased at the third visit (median [IQR]: 2.22 [0.96, 2.70] nmol/L vs. 1.69 [0.70, 1.85] nmol/L, p = 0.011). No statistically significant difference in Nabs levels was found between HCs and patients with MG (median [IQR]: 102.89 [33.13, 293.86] vs. 79.29 [37.50, 141.93], p = 0.147).

Discussion

The safety of the SARS-CoV-2 inactivated vaccine was reconfirmed in this study. No significant difference in Nabs level was found between patients with MG and HCs. Nabs levels correlated with AChR-Ab levels before vaccination and ΔAChR-Ab levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets for this study can be found in https://register.clinicaltrials.gov (NCT04941079).

Abbreviations

AChR-Ab :

Acetylcholine receptor antibody

ELISA :

Enzyme-Linked Immunosorbent Assay

HCs :

Healthy controls

IST :

Immunosuppressive therapy

IQR :

Interquartile range

MG :

Myasthenia gravis

MG-ADL :

MG‐activities of daily living profile

MGC :

MG‐composite

MGFA :

Myasthenia Gravis Foundation of America

MG-MMT :

MG-manual muscle test

MG-QoL15 :

MG-quality of life, Nabs neutralization antibodies QMG quantitative MG score, SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

T1 :

Time interval (Days) between second dose vaccination and third visit

T2 :

Time interval (Days) between first dose vaccination and third visit

T3 :

Time interval (Days) between first dose vaccination and second dose vaccination

STROBE :

The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline

References

  1. Muppidi S, Guptill JT, Jacob S et al (2020) COVID-19-associated risks and effects in myasthenia gravis (CARE-MG). Lancet Neurol 19:970–971. https://doi.org/10.1016/S1474-4422(20)30413-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jakubíková M, Týblová M, Tesař A et al (2021) Predictive factors for a severe course of COVID-19 infection in myasthenia gravis patients with an overall impact on myasthenic outcome status and survival. Eur J Neurol 28:3418–3425. https://doi.org/10.1111/ene.14951

    Article  PubMed  PubMed Central  Google Scholar 

  3. Solé G, Mathis S, Friedman D et al (2021) Impact of Coronavirus Disease 2019 in a French Cohort of Myasthenia Gravis. Neurology 96:e2109–e2120. https://doi.org/10.1212/WNL.0000000000011669

    Article  CAS  PubMed  Google Scholar 

  4. Jara A, Undurraga EA, González C et al (2021) Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N Engl J Med 385:875–884. https://doi.org/10.1056/NEJMoa2107715

    Article  CAS  PubMed  Google Scholar 

  5. Ruan Z, Tang Y, Li C et al (2021) COVID-19 Vaccination in Patients with Myasthenia Gravis: A Single-Center Case Series. Vaccines (Basel) 9:1112. https://doi.org/10.3390/vaccines9101112

    Article  CAS  PubMed  Google Scholar 

  6. Zhou Q, Zhou R, Yang H, Yang H (2021) To Be or Not To Be Vaccinated: That Is a Question in Myasthenia Gravis. Front Immunol 12:733418. https://doi.org/10.3389/fimmu.2021.733418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lotan I, Hellmann MA, Friedman Y et al (2022) Early safety and tolerability profile of the BNT162b2 COVID-19 vaccine in myasthenia gravis. Neuromuscul Disord 32:230–235. https://doi.org/10.1016/j.nmd.2022.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lupica A, Di Stefano V, Iacono S et al (2022) Impact of COVID-19 in AChR Myasthenia Gravis and the Safety of Vaccines: Data from an Italian Cohort. Neurol Int 14:406–416. https://doi.org/10.3390/neurolint14020033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sansone G, Bonifati DM (2022) Vaccines and myasthenia gravis: a comprehensive review and retrospective study of SARS-CoV-2 vaccination in a large cohort of myasthenic patients. J Neurol 269(8):3965–3981. https://doi.org/10.1007/s00415-022-11140-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li H-Y, Shao L-Y, Song M et al (2022) Safety of inactivated SARS-CoV-2 vaccines in myasthenia gravis: A survey-based study. Front Immunol 13:923017. https://doi.org/10.3389/fimmu.2022.923017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farina A, Falso S, Cornacchini S et al (2022) Safety and tolerability of SARS-Cov-2 vaccination in patients with myasthenia gravis: A multicenter experience. Eur J Neurol 29(8):2505–2510. https://doi.org/10.1111/ene.15348

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gamez J, Gamez A, Carmona F (2022) Safety of mRNA COVID-19 vaccines in patients with well-controlled myasthenia gravis. Muscle Nerve 66:612–617. https://doi.org/10.1002/mus.27703

    Article  CAS  PubMed  Google Scholar 

  13. Urra Pincheira A, Alnajjar S, Katzberg H et al (2022) Retrospective study on the safety of COVID-19 vaccination in myasthenia gravis. Muscle Nerve 66:558–561. https://doi.org/10.1002/mus.27657

    Article  CAS  PubMed  Google Scholar 

  14. Doron A, Piura Y, Vigiser I et al (2022) BNT162b2 mRNA COVID-19 vaccine three-dose safety and risk of COVID-19 in patients with myasthenia gravis during the alpha, delta, and omicron waves. J Neurol 269:6193–6201. https://doi.org/10.1007/s00415-022-11303-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang HY, Qiu L, Ou CY et al (2023) An observational study on the safety of COVID-19 vaccination in patients with myasthenia gravis. Neurol Sci 1–7. https://doi.org/10.1007/s10072-023-06811-y

  16. Ruan Z, Huan X, Su Y et al (2023) Safety of COVID-19 vaccine in patients with myasthenia gravis: a self-controlled case series study. Front Immunol 14:1141983. https://doi.org/10.3389/fimmu.2023.1141983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yao H, Song Y, Chen Y et al (2020) Molecular Architecture of the SARS-CoV-2 Virus. Cell 183:730-738.e13. https://doi.org/10.1016/j.cell.2020.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren L-L, Wang Y-M, Wu Z-Q et al (2020) Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl) 133:1015–1024. https://doi.org/10.1097/CM9.0000000000000722

    Article  CAS  PubMed  Google Scholar 

  19. Kim D, Lee J-Y, Yang J-S et al (2020) The Architecture of SARS-CoV-2 Transcriptome. Cell 181:914-921.e10. https://doi.org/10.1016/j.cell.2020.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shang J, Wan Y, Luo C et al (2020) Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 117:11727–11734. https://doi.org/10.1073/pnas.2003138117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. McCallum M, Walls AC, Bowen JE et al (2020) Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. Nat Struct Mol Biol 27:942–949. https://doi.org/10.1038/s41594-020-0483-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu J, Gao Q, He C et al (2020) Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2. Genes Dis 7:551–557. https://doi.org/10.1016/j.gendis.2020.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nie J, Li Q, Wu J et al (2020) Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat Protoc 15:3699–3715. https://doi.org/10.1038/s41596-020-0394-5

    Article  CAS  PubMed  Google Scholar 

  24. Hyseni I, Molesti E, Benincasa L et al (2020) Characterisation of SARS-CoV-2 Lentiviral Pseudotypes and Correlation between Pseudotype-Based Neutralisation Assays and Live Virus-Based Micro Neutralisation Assays. Viruses 12:E1011. https://doi.org/10.3390/v12091011

    Article  Google Scholar 

  25. Li Q, Liu Q, Huang W et al (2018) Current status on the development of pseudoviruses for enveloped viruses. Rev Med Virol 28:e1963. https://doi.org/10.1002/rmv.1963

    Article  PubMed  Google Scholar 

  26. Zhang L, Li Q, Liu Q et al (2017) A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. Hum Vaccin Immunother 13:1811–1817. https://doi.org/10.1080/21645515.2017.1325050

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang B, Wang B, Liu P et al (2014) Package of NDV-pseudotyped HIV-Luc virus and its application in the neutralization assay for NDV infection. PLoS ONE 9:e99905. https://doi.org/10.1371/journal.pone.0099905

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jaretzki A, Barohn RJ, Ernstoff RM et al (2000) Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology 55:16–23. https://doi.org/10.1212/wnl.55.1.16

    Article  PubMed  Google Scholar 

  29. Raja SM, Howard JF, Juel VC et al (2019) Clinical outcome measures following plasma exchange for MG exacerbation. Ann Clin Transl Neurol 6:2114–2119. https://doi.org/10.1002/acn3.50901

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tackenberg B, Schneider M, Blaes F et al (2018) Acetylcholine Receptor Antibody Titers and Clinical Course after Influenza Vaccination in Patients with Myasthenia Gravis: A Double-Blind Randomized Controlled Trial (ProPATIent-Trial). EBioMedicine 28:143–150. https://doi.org/10.1016/j.ebiom.2018.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  31. Toplak N, Kveder T, Trampus-Bakija A et al (2008) Autoimmune response following annual influenza vaccination in 92 apparently healthy adults. Autoimmun Rev 8:134–138. https://doi.org/10.1016/j.autrev.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  32. Lazaridis K, Tzartos SJ (2020) Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Front Immunol 11:212. https://doi.org/10.3389/fimmu.2020.00212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shao K, Yue Y-X, Zhao L-M et al (2022) Optimization of the cut-offs in acetylcholine receptor antibodies and diagnostic performance in myasthenia gravis patients. Clin Chim Acta 533:122–130. https://doi.org/10.1016/j.cca.2022.06.017

    Article  CAS  PubMed  Google Scholar 

  34. Gummi RR, Kukulka NA, Deroche CB, Govindarajan R (2019) Factors associated with acute exacerbations of myasthenia gravis. Muscle Nerve 60:693–699. https://doi.org/10.1002/mus.26689

    Article  PubMed  Google Scholar 

  35. Alcantara M, Koh M, Park AL et al (2023) Outcomes of COVID-19 Infection and Vaccination Among Individuals With Myasthenia Gravis. JAMA Netw Open 6:e239834. https://doi.org/10.1001/jamanetworkopen.2023.9834

    Article  PubMed  PubMed Central  Google Scholar 

  36. Di Stefano V, Lupica A, Rispoli MG et al (2020) Rituximab in AChR subtype of myasthenia gravis: systematic review. J Neurol Neurosurg Psychiatry 91:392–395. https://doi.org/10.1136/jnnp-2019-322606

    Article  PubMed  Google Scholar 

  37. Medeiros-Ribeiro AC, Aikawa NE, Saad CGS et al (2021) Immunogenicity and safety of the CoronaVac inactivated vaccine in patients with autoimmune rheumatic diseases: a phase 4 trial. Nat Med 27:1744–1751. https://doi.org/10.1038/s41591-021-01469-5

    Article  CAS  PubMed  Google Scholar 

  38. Aikawa NE, Kupa LVK, Pasoto SG et al (2022) Immunogenicity and safety of two doses of the CoronaVac SARS-CoV-2 vaccine in SARS-CoV-2 seropositive and seronegative patients with autoimmune rheumatic diseases in Brazil: a subgroup analysis of a phase 4 prospective study. Lancet Rheumatol 4:e113–e124. https://doi.org/10.1016/S2665-9913(21)00327-1

    Article  CAS  PubMed  Google Scholar 

  39. Plymate LC, Pepper G, Krist MP, Koelle DM (2021) Immunogenicity of repeat COVID-19 mRNA vaccinations in a patient with myasthenia gravis receiving mycophenolate, prednisone, and eculizumab. J Transl Autoimmun 4:100114. https://doi.org/10.1016/j.jtauto.2021.100114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Golding B, Lee Y, Golding H, Khurana S (2021) Pause in immunosuppressive treatment results in improved immune response to SARS-CoV-2 vaccine in autoimmune patient: a case report. Ann Rheum Dis 80:1359–1361. https://doi.org/10.1136/annrheumdis-2021-220993

    Article  CAS  PubMed  Google Scholar 

  41. Krammer F (2020) SARS-CoV-2 vaccines in development. Nature 586:516–527. https://doi.org/10.1038/s41586-020-2798-3

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Sommer N, Tackenberg B, Hohlfeld R (2008) The immunopathogenesis of myasthenia gravis. Handb Clin Neurol 91:169–212. https://doi.org/10.1016/S0072-9752(07)01505-9

    Article  PubMed  Google Scholar 

  43. Vista ES, Crowe SR, Thompson LF et al (2012) Influenza vaccination can induce new-onset anticardiolipins but not β2-glycoprotein-I antibodies among patients with systemic lupus erythematosus. Lupus 21:168–174. https://doi.org/10.1177/0961203311429554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cai Y, Han L, Zhu D et al (2021) A Stable Cell Line Expressing Clustered AChR: A Novel Cell-Based Assay for Anti-AChR Antibody Detection in Myasthenia Gravis. Front Immunol 12:666046. https://doi.org/10.3389/fimmu.2021.666046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gambino CM, Agnello L, Lo Sasso B et al (2021) Comparative Analysis of BIOCHIP Mosaic-Based Indirect Immunofluorescence with Enzyme-Linked Immunosorbent Assay for Diagnosing Myasthenia Gravis. Diagnostics (Basel) 11:2098. https://doi.org/10.3390/diagnostics11112098

    Article  CAS  PubMed  Google Scholar 

  46. Yu X, Qi X, Cao Y et al (2022) Three doses of an inactivation-based COVID-19 vaccine induces cross-neutralizing immunity against the SARS CoV-2 Omicron variant. Emerg Microbes Infect 11:749–752. https://doi.org/10.1080/22221751.2022.2044271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the patients, healthy controls, and the team of research assistants in the First Affiliated Hospital of Chongqing Medical University

Funding

This work was supported by Future Medical Youth Innovation Team Program of Chongqing Medical University (No. W0043), the Fifth Senior Medical Talents Program of Chongqing for Young and Middle-aged, Middle-aged Medical Excellence Team Program of Chongqing, and Chongqing chief expert studio project, China, Young and Middle-aged Medical Excellence Team Program of Chongqing, and Chongqing Talent Program (CQYC202005013).

Author information

Authors and Affiliations

Authors

Contributions

Fei Xiao, and Quanxin Long contributed to the study design, critical revision of manuscript. Wei Zheng and Xiaoxia Cao study design, patient testing, acquisition of data, statistical analysis, writing the manuscript. Jing Luo, Zhuoting Liu, Wenjun Que, Xia Guo, and Rui Fan, acquisition of data, statistical analysis.

Corresponding authors

Correspondence to Quanxin Long or Fei Xiao.

Ethics declarations

Ethical approval

This prospective observational cohort study was performed at the First Affiliated Hospital of Chongqing Medical University and approved by the Ethics Committee of the First Affiliated Hospital of Chongqing Medical University (2021–296).

Informed consent

Informed consent to participate and publication from the patient was also obtained.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wei Zheng and Xiaoxia Cao share first authorship.

Quanxin Long and Fei Xiao share last authorship.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Supplementary file2 (DOCX 39 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Cao, X., Luo, J. et al. Safety and neutralization antibody levels of inactivated SARS-CoV-2 vaccine in adult patients with Myasthenia Gravis: a prospective observational cohort study. Neurol Sci 45, 1707–1717 (2024). https://doi.org/10.1007/s10072-023-07186-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-07186-w

Keywords

Navigation