Skip to main content

Advertisement

Log in

Association of APOE gene with longitudinal changes of CSF amyloid beta and tau levels in Alzheimer’s disease: racial differences

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

The Apolipoprotein E (APOE) ε4 allele is a risk factor for late-onset Alzheimer’s disease (AD). However, no investigation has focused on racial differences in the longitudinal effect of APOE genotypes on CSF amyloid beta (Aβ42) and tau levels in AD.

Methods

This study used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI): 222 participants with AD, 264 with cognitive normal (CN), and 692 with mild cognitive impairment (MCI) at baseline and two years follow-up. We used a linear mixed model to investigate the effect of APOE-ε4-genotypes on longitudinal changes in the amyloid beta and tau levels.

Results

Individuals with 1 or 2 APOE ε4 alleles revealed significantly higher t-Tau and p-Tau, but lower amyloid beta Aβ42 compared with individuals without APOE ε4 alleles. Significantly higher levels of log-t-Tau, log-p-Tau, and low levels of log-Aβ42 were observed in the subjects with older age, being female, and the two diagnostic groups (AD and MCI). The higher p-Tau and Aβ42 values are associated with poor Mini-Mental State Examination (MMSE) performance. Non-Hispanic Africa American (AA) and Hispanic participants were associated with decreased log-t-Tau levels (β =  − 0.154, p = 0.0112; β =  − 0.207, and p = 0.0016, respectively) as compared to those observed in Whites. Furthermore, Hispanic participants were associated with a decreased log-p-Tau level (β =  − 0.224, p = 0.0023) compared to those observed in Whites. There were no differences in Aβ42 level for non-Hispanic AA and Hispanic participants compared with White participants.

Conclusion

Our study, for the first time, showed that the APOE ε4 allele was associated with these biomarkers, however with differing degrees among racial groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data used in the preparation of this article was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

References

  1. Association A. s (2021) Alzheimer’s disease facts and figures 2021. Alzheimer’s Dement 17:327–406

  2. Association A. s (2016) 2016 Alzheimer's disease facts and figures. Alzheimers Dement 12:459–509. https://doi.org/10.1016/j.jalz.2016.03.001. https://alz-journals.onlinelibrary.wiley.com/doi/abs/ https://doi.org/10.1016/j.jalz.2016.03.001

  3. Association A. s (2022) 2022 Alzheimer's disease facts and figures. Alzheimers Dement 18:700–89. https://doi.org/10.1002/alz.12638. https://www.ncbi.nlm.nih.gov/pubmed/35289055

  4. Lozano S, Padilla V, Avila ML, Gil M, Maestre G, Wang K, Xu C (2021) APOE gene associated with cholesterol-related traits in the Hispanic population. Genes (Basel) 12. https://doi.org/10.3390/genes12111768. https://www.ncbi.nlm.nih.gov/pubmed/34828374

  5. Reitz C, Mayeux R (2014) Genetics of Alzheimer’s disease in Caribbean Hispanic and African American populations. Biol Psychiat 75:534–541. https://doi.org/10.1016/j.biopsych.2013.06.003.10.1016/j.biopsych.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez-Vieitez E, Nielsen HM (2019) Associations between APOE variants, tau and α-synuclein. Adv Exp Med Biol 1184:177–186. https://doi.org/10.1007/978-981-32-9358-8_15

    Article  CAS  PubMed  Google Scholar 

  7. Pang C, Yang H, Hu B, Wang S, Chen M, Cohen DS, Chen HS, Jarrell JT, Carpenter KA, Rosin ER et al (2019) Identification and analysis of Alzheimer's candidate genes by an amplitude deviation algorithm. J Alzheimers Dis Parkinsonism 9. https://doi.org/10.4172/2161-0460.1000460

  8. Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the united states (2010-2050) estimated using the 2010 census. Neurology 80:1778–1783. https://doi.org/10.1212/wnl.0b013e31828726f5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nebel RA, Aggarwal NT, Barnes LL, Gallagher A, Goldstein JM, Kantarci K, Mallampalli MP, Mormino EC, Scott L, Yu WH et al (2018) Understanding the impact of sex and gender in Alzheimer’s disease: a call to action. Alzheimers Dement 14:1171–1183. https://doi.org/10.1016/j.jalz.2018.04.008.10.1016/j.jalz.2018.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yamazaki Y, Zhao N, Caulfield TR, Liu C-C, Bu G (2019) Apolipoprotein e and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 15:501–518. https://doi.org/10.1038/s41582-019-0228-7.10.1038/s41582-019-0228-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burnham SC, Laws SM, Budgeon CA, Dore V, Porter T, Bourgeat P, Buckley RF, Murray K, Ellis KA, Turlach BA et al (2020) "Impact of APOE-epsilon4 carriage on the onset and rates of neocortical Abeta-amyloid deposition. Neurobiol Aging 95:46–55. https://doi.org/10.1016/j.neurobiolaging.2020.06.001. https://www.ncbi.nlm.nih.gov/pubmed/32750666

  12. Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, Blennow K, Cummings J, van Duijn C, Nilsson PM et al (2022) The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci 23:53–66. https://doi.org/10.1038/s41583-021-00533-w. https://www.ncbi.nlm.nih.gov/pubmed/34815562

  13. Saddiki H, Fayosse A, Cognat E, Sabia S, Engelborghs S, Wallon D, Alexopoulos P, Blennow K, Zetterberg H, Parnetti L et al (2020) Age and the association between apolipoprotein e genotype and Alzheimer disease: a cerebrospinal fluid biomarker–based case–control study. PLOS Med 17:e1003289. https://doi.org/10.1371/journal.pmed.1003289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schindler SE, Karikari TK, Ashton NJ, Henson RL, Yarasheski KE, West T, Meyer MR, Kirmess KM, Li Y, Saef B et al (2022) Effect of race on prediction of brain amyloidosis by plasma abeta42/abeta40, phosphorylated tau, and neurofilament light. Neurology 99:e245-e57. https://doi.org/10.1212/WNL.0000000000200358. https://www.ncbi.nlm.nih.gov/pubmed/35450967

  15. Mahaman YAR, Embaye KS, Huang F, Li L, Zhu F, Wang JZ, Liu R, Feng J, Wang X (2022) Biomarkers used in Alzheimer's disease diagnosis, treatment, and prevention. Ageing Res Rev 74:101544. https://doi.org/10.1016/j.arr.2021.101544. https://www.ncbi.nlm.nih.gov/pubmed/34933129

  16. Ferreira D, Rivero-Santana A, Perestelo-Pérez L, Westman E, Wahlund LO, Sarría A, Serrano-Aguilar P (2014) Improving CSF biomarkers’ performance for predicting progression from mild cognitive impairment to Alzheimer’s disease by considering different confounding factors: a meta-analysis. Front Aging Neurosci 6:287. https://doi.org/10.3389/fnagi.2014.00287

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D et al (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127. https://doi.org/10.1016/s1474-4422(10)70223-4

    Article  PubMed  Google Scholar 

  18. Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13. https://doi.org/10.1186/1750-1326-4-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Konijnenberg E, Tomassen J, den Braber A, Ten Kate M, Yaqub M, Mulder SD, Nivard MG, Vanderstichele H, Lammertsma AA, Teunissen CE et al (2021) Onset of preclinical Alzheimer disease in monozygotic twins. Ann Neurol 89:987–1000. https://doi.org/10.1002/ana.26048. https://www.ncbi.nlm.nih.gov/pubmed/33583080

  20. Jellinger KA (2020) Pathobiological subtypes of Alzheimer disease. Dement Geriatr Cogn Disord 49:321–33. https://doi.org/10.1159/000508625

  21. Andreasen N, Minthon L, Vanmechelen E, Vanderstichele H, Davidsson P, Winblad B, Blennow K (1999) Cerebrospinal fluid tau and abeta42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment. Neurosci Lett 273:5–8. https://doi.org/10.1016/s0304-3940(99)00617-5

    Article  CAS  PubMed  Google Scholar 

  22. Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284:643–663. https://doi.org/10.1111/joim.12816.10.1111/joim.12816

    Article  CAS  PubMed  Google Scholar 

  23. Husain MA, Laurent B, Plourde M (2021) APOE and Alzheimer's disease: from lipid transport to physiopathology and therapeutics. Front Neurosci 15:630502. https://doi.org/10.3389/fnins.2021.630502. https://www.ncbi.nlm.nih.gov/pubmed/33679311

  24. Cockrell JR, Folstein MF (1988) Mini-mental state examination (MMSE). Psychopharmacol Bull 24:689–692

    CAS  PubMed  Google Scholar 

  25. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–91. https://doi.org/10.3758/bf03193146. https://www.ncbi.nlm.nih.gov/pubmed/17695343

  26. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149–60. https://doi.org/10.3758/BRM.41.4.1149. https://www.ncbi.nlm.nih.gov/pubmed/19897823

  27. Gu L, Shu H, Wang Y, Wang P (2023) Blood neurofilament light chain in different types of dementia. Curr Alzheimer Res. https://doi.org/10.2174/1567205020666230601123123. https://www.ncbi.nlm.nih.gov/pubmed/37264656

  28. Lautner R, Palmqvist S, Mattsson N, Andreasson U, Wallin A, Palsson E, Jakobsson J, Herukka SK, Owenius R, Olsson B et al (2014) Apolipoprotein e genotype and the diagnostic accuracy of cerebrospinal fluid biomarkers for Alzheimer disease. JAMA Psychiatry 71:1183–91. https://doi.org/10.1001/jamapsychiatry.2014.1060. https://www.ncbi.nlm.nih.gov/pubmed/25162367

  29. Konijnenberg E, Tijms BM, Gobom J, Dobricic V, Bos I, Vos S, Tsolaki M, Verhey F, Popp J, Martinez-Lage P et al (2020) APOE epsilon4 genotype-dependent cerebrospinal fluid proteomic signatures in Alzheimer's disease. Alzheimers Res Ther 12:65. https://doi.org/10.1186/s13195-020-00628-z. https://www.ncbi.nlm.nih.gov/pubmed/32460813

  30. Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, Mintun MA (2010) APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol 67:122–31. https://doi.org/10.1002/ana.21843. https://www.ncbi.nlm.nih.gov/pubmed/20186853

  31. Risacher SL, Kim S, Shen L, Nho K, Foroud T, Green RC, Petersen RC, Jack CR Jr, Aisen PS, Koeppe RA et al (2013) The role of apolipoprotein e (APOE) genotype in early mild cognitive impairment (E-MCI). Front Aging Neurosci 5:11. https://doi.org/10.3389/fnagi.2013.00011. https://www.ncbi.nlm.nih.gov/pubmed/23554593

  32. Benson GS, Bauer C, Hausner L, Couturier S, Lewczuk P, Peters O, Hull M, Jahn H, Jessen F, Pantel J et al (2022) Don't forget about tau: the effects of ApoE4 genotype on Alzheimer's disease cerebrospinal fluid biomarkers in subjects with mild cognitive impairment-data from the dementia competence network. J Neural Transm (Vienna) 129:477–86. https://doi.org/10.1007/s00702-022-02461-0. https://www.ncbi.nlm.nih.gov/pubmed/35061102

  33. Schwartzentruber J, Cooper S, Liu JZ, Barrio-Hernandez I, Bello E, Kumasaka N, Young AMH, Franklin RJM, Johnson T, Estrada K et al (2021) Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat Genet 53:392–402. https://doi.org/10.1038/s41588-020-00776-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suri S, Heise V, Trachtenberg AJ, Mackay CE (2013) The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE ɛ2. Neurosci Biobehav Rev 37:2878–2886. https://doi.org/10.1016/j.neubiorev.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  35. Oikonomidi A, Tautvydaite D, Gholamrezaee MM, Henry H, Bacher M, Popp J (2017) Macrophage migration inhibitory factor is associated with biomarkers of Alzheimer's disease pathology and predicts cognitive decline in mild cognitive impairment and mild dementia. J Alzheimers Dis 60:273–81. https://doi.org/10.3233/JAD-170335. https://www.ncbi.nlm.nih.gov/pubmed/28826184

  36. Grewal R, Haghighi M, Huang S, Smith AG, Cao C, Lin X, Lee DC, Teten N, Hill AM, Selenica MB (2016) Identifying biomarkers of dementia prevalent among amnestic mild cognitively impaired ethnic female patients. Alzheimers Res Ther 8:43. https://doi.org/10.1186/s13195-016-0211-0. https://www.ncbi.nlm.nih.gov/pubmed/27756387

  37. Morris JC, Schindler SE, McCue LM, Moulder KL, Benzinger TLS, Cruchaga C, Fagan AM, Grant E, Gordon BA, Holtzman DM et al (2019) Assessment of racial disparities in biomarkers for Alzheimer disease. JAMA Neurol 76:264–73. https://doi.org/10.1001/jamaneurol.2018.4249. https://www.ncbi.nlm.nih.gov/pubmed/30615028

  38. Moon S, Kim S, Mankhong S, Choi SH, Vandijck M, Kostanjevecki V, Jeong JH, Yoon SJ, Park KW, Kim E-J et al (2021) Alzheimer’s cerebrospinal biomarkers from Lumipulse fully automated immunoassay: concordance with amyloid-beta pet and manual immunoassay in Koreans. Alzheimers Res Ther 13:22. https://doi.org/10.1186/s13195-020-00767-3.10.1186/s13195-020-00767-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manly JJ, Touradji P, Tang MX, Stern Y (2003) Literacy and memory decline among ethnically diverse elders. J Clin Exp Neuropsychol 25:680–690. https://doi.org/10.1076/jcen.25.5.680.14579

    Article  PubMed  Google Scholar 

  40. Yaffe K, Falvey C, Harris TB, Newman A, Satterfield S, Koster A, Ayonayon H, Simonsick E (2013) Effect of socioeconomic disparities on incidence of dementia among biracial older adults: prospective study. Bmj 347:f7051. https://doi.org/10.1136/bmj.f7051

    Article  PubMed  PubMed Central  Google Scholar 

  41. Barnes LL, Bennett DA (2014) Alzheimer’s disease in African Americans: risk factors and challenges for the future. Health Aff (Millwood) 33:580–586. https://doi.org/10.1377/hlthaff.2013.1353

    Article  PubMed  Google Scholar 

  42. Bellenguez C, Kucukali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, Naj AC, Campos-Martin R, Grenier-Boley B, Andrade V et al (2022) New insights into the genetic etiology of Alzheimer's disease and related dementias. Nat Genet 54:412–36. https://doi.org/10.1038/s41588-022-01024-z. https://www.ncbi.nlm.nih.gov/pubmed/35379992

  43. Misiura MB, Howell JC, Wu J, Qiu D, Parker MW, Turner JA, Hu WT (2020) Race modifies default mode connectivity in Alzheimer's disease. Transl Neurodegener 9:8. https://doi.org/10.1186/s40035-020-0186-4. https://www.ncbi.nlm.nih.gov/pubmed/32099645

Download references

Acknowledgements

The present study is a secondary data analysis. The original study and ADNI were funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Conceptualization, C.X. and K.W.; methodology, C.X., D.X., B.B.S., and K.W.; data analysis and interpretation, C.X., D.X., N.W., D.A.A., and K.W.; investigation, C.X., D.X., and K.W.; writing—original draft preparation, C.X., D.X., J.M.S., D.G., U.R., and K.W.; writing—review and editing, D.X., B.B.S., O.R.N., N.W., and D.A.A.; supervision, C.X. and K.W.; all authors read and agreed to the published version of the manuscript. The Alzheimer’s Disease Neuroimaging Initiative—data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

Corresponding author

Correspondence to Kesheng Wang.

Ethics declarations

Ethical approval

There was an Institutional Review Board exemption for the current study due to secondary data analysis. Data used in the preparation of this article was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

Informed consent

Informed consent was obtained from all subjects involved in the original study. Data used in the preparation of this article was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Xiao, D., Su, B.B. et al. Association of APOE gene with longitudinal changes of CSF amyloid beta and tau levels in Alzheimer’s disease: racial differences. Neurol Sci 45, 1041–1050 (2024). https://doi.org/10.1007/s10072-023-07076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-07076-1

Keywords

Navigation