Skip to main content

Advertisement

Log in

Neurophysiological correlates of altered time awareness in Alzheimer’s disease and frontotemporal dementia

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Alterations in time awareness have been reported in dementia, particularly in Alzheimer's disease (AD) and frontotemporal dementia (FTD). However, the neurophysiological correlates underlying these alterations remain largely unexplored. This study aimed to investigate the neurophysiological correlates of altered time awareness in AD and FTD patients.

Methods

A total of 150 participants (50 AD patients, 50 FTD patients, and 50 healthy controls [HC]) underwent a standardized neuropsychological assessment, an altered time awareness survey, and transcranial magnetic stimulation (TMS) to assess cholinergic (short latency afferent inhibition—SAI), GABAergic (short interval intracortical inhibition—SICI), and glutamatergic (intracortical facilitation—ICF) circuits.

Results

In AD patients, the most frequent symptom was difficulty in ordering past events (52.0%), while FTD patients primarily struggled with estimating temporal intervals between events (40.0%). Significant differences were observed between HC and both patient groups, as well as between AD and FTD patients in their tendency to re-live past events. Binomial logistic regression analysis revealed that impairments in glutamatergic and cholinergic circuits significantly predicted the likelihood of participants manifesting altered time awareness symptoms.

Conclusions

This study provides novel insights into the neurophysiological correlates of altered time awareness in AD and FTD patients, highlighting the involvement of specific neurotransmitter circuits, particularly glutamatergic and cholinergic circuits. Further research is needed to explore the potential clinical implications and therapeutic targets arising from these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All study data, including raw and analysed data, and materials will be available from the corresponding author, A.B., upon reasonable request.

References

  1. Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D et al (2023) Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimer’s Dement 19(2):658–670. https://doi.org/10.1002/alz.12694

    Article  Google Scholar 

  2. Scheltens P, de Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE et al (2021) Alzheimer’s disease. Lancet (London, England) 397(10284):1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

    Article  CAS  PubMed  Google Scholar 

  3. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439

    Article  CAS  PubMed  Google Scholar 

  4. Nicholas T, Spina S, Miller BL (2017) Frontotemporal dementia. Neurol Clin 35(2):339–374. https://doi.org/10.1016/j.ncl.2017.01.008

    Article  Google Scholar 

  5. Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT et al (2021) Alzheimer disease. Nat Rev Dis Primers 7(1). https://doi.org/10.1038/s41572-021-00269-y

  6. Hogan DB, Jetté N, Fiest KM, Roberts JI, Pearson D, Smith EE et al (2016) The prevalence and incidence of frontotemporal dementia: a systematic review. Can J Neurol Sci 43(Suppl 1):S96–S109. https://doi.org/10.1017/cjn.2016.25

    Article  PubMed  Google Scholar 

  7. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134(Pt 9):2456–2477. https://doi.org/10.1093/brain/awr179

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76(11):1006–1014. https://doi.org/10.1212/WNL.0b013e31821103e6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Requena-Komuro M-C, Marshall CR, Bond RL, Russell LL, Greaves C, Moore KM et al (2020) Altered time awareness in dementia. Front Neurol 11:291. https://doi.org/10.3389/fneur.2020.00291

    Article  PubMed  PubMed Central  Google Scholar 

  10. Basgol H, Ayhan I, Ugur E (2021) Time perception: a review on psychological, computational and robotic models. IEEE Trans Cogn Dev Syst 1. https://doi.org/10.1109/TCDS.2021.3059045

  11. Buhusi CV, Oprisan SA, Buhusi M (2018) Biological and cognitive frameworks for a mental timeline. Front Neurosci 12:377. https://doi.org/10.3389/fnins.2018.00377

    Article  PubMed  PubMed Central  Google Scholar 

  12. El Haj M, Moroni C, Samson S, Fasotti L, Allain P (2013) Prospective and retrospective time perception are related to mental time travel: evidence from Alzheimer’s disease. Brain Cogn 83(1):45–51. https://doi.org/10.1016/j.bandc.2013.06.008

    Article  PubMed  Google Scholar 

  13. Tulving E (2002) Episodic memory: from mind to brain. Annu Rev Psychol 53:1–25. https://doi.org/10.1146/annurev.psych.53.100901.135114

    Article  PubMed  Google Scholar 

  14. Pouthas V, George N, Poline J-B, Pfeuty M, Vandemoorteele P-F, Hugueville L et al (2005) Neural network involved in time perception: an fMRI study comparing long and short interval estimation. Hum Brain Mapp 25(4):433–441. https://doi.org/10.1002/hbm.20126

    Article  PubMed  PubMed Central  Google Scholar 

  15. Üstün S, Kale EH, Çiçek M (2017) Neural networks for time perception and working memory. Front Hum Neurosci 11:83. https://doi.org/10.3389/fnhum.2017.00083

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wittmann, Marc (2009) The inner experience of time. Phil Trans R Soc London Ser B Biol Sci 364(1525):1955–1967. https://doi.org/10.1098/rstb.2009.0003

  17. Jahn H (2013) Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 15(4):445–454

    Article  PubMed  PubMed Central  Google Scholar 

  18. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. https://doi.org/10.1196/annals.1440.011

    Article  PubMed  Google Scholar 

  19. Morillon B, Kell CA, Giraud A-L (2009) Three stages and four neural systems in time estimation. J Neurosci 29(47):14803–14811. https://doi.org/10.1523/JNEUROSCI.3222-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. MacDonald CJ, Fortin NJ, Sakata S, Meck WH (2014) Retrospective and prospective views on the role of the hippocampus in interval timing and memory for elapsed time. Timing Time Percept 2(1):51–61. https://doi.org/10.1163/22134468-00002020

    Article  Google Scholar 

  21. Eichenbaum H (2014) Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci 15(11):732–744. https://doi.org/10.1038/nrn3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meck WH (1996) Neuropharmacology of timing and time perception. Cogn Brain Res 3(3–4):227–242. https://doi.org/10.1016/0926-6410(96)00009-2

    Article  CAS  Google Scholar 

  23. Sandrini M, Manenti R (2009) La stimolazione magnetica transcranica nello studio delle funzioni cognitive. G Ital Psicol 26:347–372

    Google Scholar 

  24. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement 263–269. https://doi.org/10.1016/j.jalz.2011.03.005

  25. Benussi A, Dell’Era V, Cantoni V, Cotelli MS, Cosseddu M, Spallazzi M et al (2020) TMS for staging and predicting functional decline in frontotemporal dementia. Brain Stimul 13(2):386–392. https://doi.org/10.1016/j.brs.2019.11.009

    Article  PubMed  Google Scholar 

  26. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. J Psychiatr Res 12(3):189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  27. Husain M, Schott JM (2016) Oxford textbook of cognitive neurology and dementia. Oxford University press, Oxford

  28. Desai AK, Grossberg GT, Sheth DN (2004) Activities of daily living in patients with dementia: clinical relevance, methods of assessment and effects of treatment. CNS Drugs 18(13):853–875. https://doi.org/10.2165/00023210-200418130-00003

    Article  PubMed  Google Scholar 

  29. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 44(12):2308–2314. https://doi.org/10.1212/WNL.44.12.2308

    Article  CAS  PubMed  Google Scholar 

  30. Reitan RM (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8(3): 271–276. https://doi.org/10.2466/pms.1958.8.3.271

  31. Aprahamian I, Martinelli JE, Neri AL, Yassuda MS (2009) The clock drawing test a review of its accuracy in screening for dementia. Dement Neuropsychol 3(2):74–80. https://doi.org/10.1590/S1980-57642009DN30200002

    Article  PubMed  PubMed Central  Google Scholar 

  32. Carlesimo GA, Buccione I, Fadda L, Graceffa A, Mauri M, Lorusso S, Bevilacqua G, Caltagirone C (2002) Standardizzazione di due test di memoria per uso clinico: Breve Racconto e Figura di Rey. Nuova Riv Neurol 12(1):1–13

    Google Scholar 

  33. Padovani A, Benussi A, Cantoni V, Dell’Era V, Cotelli M, Sofia; Caratozzolo, Salvatore, et al (2018) Diagnosis of mild cognitive impairment due to Alzheimer’s disease with transcranial magnetic stimulation. J Alzheimer’s Dis: JAD 65(1):221–230. https://doi.org/10.3233/JAD-180293

    Article  PubMed  Google Scholar 

  34. Benussi A, Cotelli MS, Cantoni V, Bertasi V, Turla M, Dardis A, Biasizzo J, Manenti R, Cotelli M, Padovani A, Borroni B (2019) Clinical and neurophysiological characteristics of heterozygous NPC1 carriers. JIMD Rep 49:80–88

    Article  PubMed  PubMed Central  Google Scholar 

  35. Benussi A, Premi E, Cantoni V, Compostella S, Magni E, Gilberti N, Vergani V, Delrio I, Gamba M, Spezi R, Costa A, Tinazzi M, Padovani A, Borroni B, Magoni M (2020) Cortical inhibitory imbalance in functional paralysis. Front Hum Neurosci 14:1–7

    Article  Google Scholar 

  36. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ziemann U, Rothwell JC, Ridding MC (1996) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496:873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6(10):755–765. https://doi.org/10.1038/nrn1764

    Article  CAS  PubMed  Google Scholar 

  40. Coull JT, Cheng R-K, Meck WH (2011) Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36(1):3–25. https://doi.org/10.1038/npp.2010.113

    Article  PubMed  Google Scholar 

  41. Ivry RB, Schlerf JE (2008) Dedicated and intrinsic models of time perception. Trends Cogn Sci 12(7):273–280. https://doi.org/10.1016/j.tics.2008.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  42. Laje R, Cheng K, Buonomano DV (2011) Learning of temporal motor patterns: an analysis of continuous versus reset timing. Front Integr Neurosci 5:61. https://doi.org/10.3389/fnint.2011.00061

    Article  PubMed  PubMed Central  Google Scholar 

  43. Allman MJ, Meck WH (2012) Pathophysiological distortions in time perception and timed performance. Brain 135(Pt 3):656–677. https://doi.org/10.1093/brain/awr210

    Article  PubMed  Google Scholar 

  44. Cosseddu M, Benussi A, Gazzina S, Alberici A, Dell’Era V, Manes M, Cristillo V, Borroni B, Padovani A (2020) Progression of behavioural disturbances in frontotemporal dementia: a longitudinal observational study. Eur J Neurol 27(2):265–272. https://doi.org/10.1111/ene.14071

    Article  CAS  PubMed  Google Scholar 

  45. Benussi A, Premi E, Gazzina S, Brattini C, Bonomi E, Alberici A, Jiskoot L, van Swieten JC, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Masellis M, Tartaglia C, Rowe JB, Finger E, Vandenberghe R, de Mendonça A, Tagliavini F, Santana I, Ducharme S, Butler CR, Gerhard A, Levin J, Danek A, Otto M, Frisoni G, Ghidoni R, Sorbi S, Le Ber I, Pasquier F, Peakman G, Todd E, Bocchetta M, Rohrer JD, Borroni B, Genetic FTD Initiative (GENFI) (2021) Progression of behavioral disturbances and neuropsychiatric symptoms in patients with genetic frontotemporal dementia. JAMA Network Open 4(1):e2030194. https://doi.org/10.1001/jamanetworkopen.2020.30194

  46. El Haj M, Antoine P, Kapogiannis D (2015) Similarity between remembering the past and imagining the future in Alzheimer’s disease: implication of episodic memory. Neuropsyhcologia 66:119–125. https://doi.org/10.1016/j.neuropsychologia.2014.11.015

    Article  Google Scholar 

  47. Amanzio M, Palermo S, Zucca M, Rosato R, Rubino E, Leotta D, Rainero I (2016) Neuropsychological correlates of pre-frailty in neurocognitive disorders: a possible role for metacognitive dysfunction and mood changes. Front Med 3:56. https://doi.org/10.3389/fmed.2017.00199

    Article  Google Scholar 

  48. McKeith I, Boeve B, Dickson D et al (2017) Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 89(1):88–100. https://doi.org/10.1212/WNL.0000000000004058

    Article  PubMed  PubMed Central  Google Scholar 

  49. Metzler-Baddeley C (2007) A review of cognitive impairments in dementia with Lewy bodies relative to Alzheimer’s disease and Parkinson’s disease with dementia. Cortex 43(5):583–600. https://doi.org/10.1016/s0010-9452(08)70489-1

    Article  PubMed  Google Scholar 

  50. Stavitsky K, Brickman AM, Scarmeas N, Torgan RL, Tang MX, Albert M, Brandt J (2006) The progression of cognition, psychiatric symptoms, and functional abilities in dementia with Lewy bodies and Alzheimer disease. Arch Neurol 63(10):1450–1456. https://doi.org/10.1001/archneur.63.10.1450

    Article  PubMed  Google Scholar 

  51. Nonaka T, Suto S, Yamakawa M, Shigenobu K, Makimoto K (2014) Quantitative evaluation of changes in the clock-watching behavior of a patient with semantic dementia. Am J Alzheimer’s Dis Dement 29(6):540–547. https://doi.org/10.1177/1533317514523486

    Article  Google Scholar 

Download references

Acknowledgements

AB was partially by Fondazione Cariplo (grant n° 2021-1516), and by the Fondation pour la Recherche sur Alzheimer.

Author information

Authors and Affiliations

Authors

Contributions

VB and AB contributed to the study conception and design. All authors contributed to data collection and analysis. The first draft of the manuscript was written by VB and AB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alberto Benussi.

Ethics declarations

Ethical approval

In accordance with the Declaration of Helsinki, full written informed consent was obtained from all participants. The Brescia Hospital ethics committee approved the study protocol.

Competing interests

All authors report no competing interests relevant to the present manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracca, V., Cantoni, V., Gadola, Y. et al. Neurophysiological correlates of altered time awareness in Alzheimer’s disease and frontotemporal dementia. Neurol Sci 44, 3515–3522 (2023). https://doi.org/10.1007/s10072-023-06877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06877-8

Keywords

Navigation