Skip to main content

Advertisement

Log in

Parkinson’s disease patients combined with constipation tend to have higher serum expression of microRNA 29c, prominent neuropsychiatric disorders, possible RBD conversion, and a substandard quality of life

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Introduction

The symptom of constipation has been confirmed as an early diagnose criteria for Parkinson’s disease (PD). Furthermore, evidences suggest that pathogenesis of PD initiates in gut, rather than brain. If so, identifying biomarkers for constipation in PD might have potentials to assist early diagnosis and initial treatment.

Method

We first identified that microRNA 29c (miR-29c) was dysregulated both in PD and constipation patients through bioinformatics analysis. Then, serological analysis of the expression of miR-29c in 67 PD patients with constipation (PD–C), 51 PD patients without constipation (PD-NC), and 50 healthy controls (HC) was carried out by qPCR. Demographic and clinical features were also compared. Patients in PD–C group were further classified into two groups: those with prodromal stage constipation (PD–C-Pro) (n = 36) and those with clinical stage constipation (PD–C-Clinic) (n = 31), to explore their different characteristics.

Results

The levels of miR-29c in PD–C group were higher than that in PD-NC group, both higher than HC group. PD–C-Pro group’s miR-29c levels were statistically higher compared with PD–C-Clinic group’s. What is more, PD–C group had higher scores of MDS-UPDRS-I, NMSS, NMSS3, NMSS4, NMSS6, NMSS9, SCOPA-AUT, HAMD, HAMA, RBDSQ, CSS, and PACQOL compared with PD-NC party. Relative to the PD–C-Clinic, patients in PD–C-Pro group had higher MDS-UPDRS-I, NMSS, NMSS3, HAMD, and HAMA scores, and were more likely to have RBD.

Conclusion

Our results indicated that miR-29c seems to be an underlying cause for developing constipation in patients with PD and PD–C identifies a group of patients with more severe non-motor impairment, prominent neuropsychiatric disorders, and possible RBD conversion as well as a substandard quality of life. We further confirmed that there is a close relationship between symptoms representing the same pathological origin, especially constipation and RBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Datasets associated with the present study are available upon reasonable request of interested researchers.

References

  1. Makaroff L, Gunn A, Gervasoni C et al (2011) Gastrointestinal disorders in Parkinson’s disease: prevalence and health outcomes in a US claims database. J Parkinsons Dis 1(1):65–74

    Article  PubMed  Google Scholar 

  2. Chen Z, Li G, Liu J (2020) Autonomic dysfunction in Parkinson’s disease: implications for pathophysiology, diagnosis, and treatment. Neurobiol Dis 134:104700

    Article  PubMed  Google Scholar 

  3. Adams-Carr KL, Bestwick JP, Shribman S et al (2016) Constipation preceding Parkinson’s disease: a systematic review and meta-analysis. J Neurol Neurosurg J Pre-proof Psychiatry 87(7):710–716

    Article  Google Scholar 

  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Long JM, Lahiri DK (2011) Current drug targets for modulating Alzheimer’s amyloid precursor protein: role of specific micro-RNA species. Curr Med Chem 18(22):3314–3321

    Article  CAS  PubMed  Google Scholar 

  6. Wang R, Chopra N, Nho K et al (2022) Human microRNA (miR-20b-5p) modulates Alzheimer’s disease pathways and neuronal function, and a specific polymorphism close to the miR20b gene influences Alzheimer’s biomarkers. Mol Psychiatry 27(2):1256–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Soto M, Iranzo A, Lahoz S et al (2022) Serum MicroRNAs predict isolated rapid eye movement sleep behavior disorder and Lewy body diseases. Mov Disord 37(10):2086–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Etheridge A, Lee I, Hood L et al (2011) Extracellular microRNA: a new source of biomarkers. Mutat Res 717(1–2):85–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma W, Li Y, Wang C et al (2016) Serum miR-221 serves as a biomarker for Parkinson’s disease. Cell Biochem Funct 34(7):511–515

    Article  CAS  PubMed  Google Scholar 

  10. Ozdilek B, Demircan B (2021) Serum microRNA expression levels in Turkish patients with Parkinson’s disease. Int J Neurosci 131(12):1181–1189

    Article  CAS  PubMed  Google Scholar 

  11. Ardashirova NS, Abramycheva NY, Fedotova EY et al (2022) MicroRNA expression profile changes in the leukocytes of Parkinson’s disease patients. Acta Naturae 14(3):79–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang Y, Chen J, Sun Y et al (2021) Profiling of differentially expressed MicroRNAs in saliva of Parkinson’s disease patients. Front Neurol 12:738530

    Article  PubMed  PubMed Central  Google Scholar 

  13. Botta-Orfila T, Morató X, Compta Y et al (2014) Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J Neurosci Res 92(8):1071–1077

    Article  CAS  PubMed  Google Scholar 

  14. Shen L, Zhou K, Liu H et al (2022) Prediction of mechanosensitive genes in vascular endothelial cells under high wall shear stress. Front Genet 12:796812

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gao S, Ding B, Lou W (2020) microRNA-dependent modulation of genes contributes to ESR1’s effect on ERα positive breast cancer. Front Oncol 10:753

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang AC, Jiang T, Liu YX et al (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364(6440):eaau6389

    Article  CAS  PubMed  Google Scholar 

  17. Venn J (1880) On the diagrammatic and mechanical representation of propositions and reasonings. Phil Mag 9(59):1–18

    Article  Google Scholar 

  18. Jia A, Xu L, Wang Y (2021) Venn diagrams in bioinformatics. Brief Bioinform 22(5):bbab108

    Article  PubMed  Google Scholar 

  19. Marks H, Kalkan T, Menafra R et al (2012) The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149(3):590–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palsson OS, Whitehead WE, van Tilburg MA et al (2016) Rome IV diagnostic questionnaires and tables for investigators and clinicians. Gastroenterology S0016–5085(16):00180–00183

    Google Scholar 

  21. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442

    Article  CAS  PubMed  Google Scholar 

  22. Goetz CG, Tilley BC, Shaftman SR et al (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170

    Article  PubMed  Google Scholar 

  23. Chaudhuri KR, Martinez-Martin P, Schapira AH et al (2006) International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease: the NMSQuest study. Mov Disord 21(7):916–923

    Article  PubMed  Google Scholar 

  24. Visser M, Marinus J, Stiggelbout AM et al (2004) Assessment of autonomic dysfunction in Parkinson’s disease: the SCOPA-AUT. Mov Disord 19(11):1306–1312

    Article  PubMed  Google Scholar 

  25. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  26. Chaudhuri KR, Pal S, DiMarco A et al (2002) The Parkinson’s disease sleep scale: a new instrument for assessing sleep and nocturnal disability in Parkinson’s disease. J Neurol Neurosurg Psychiatry 73(6):629–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14(6):540e5

    Article  Google Scholar 

  28. Walters AS, LeBrocq C, Dhar A et al (2003) Validation of the International Restless Legs Syndrome Study Group rating scale for restless legs syndrome. Sleep Med 4(2):121–132

    Article  PubMed  Google Scholar 

  29. Wang Y, Wang ZW, Yang YC et al (2015) Validation of the rapid eye movement sleep behavior disorder screening questionnaire in China. J Clin Neurosci 22(9):1420–1424

    Article  PubMed  Google Scholar 

  30. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23(1):56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamilton M (1959) The assessment of anxiety states by rating. Br J Med Psychol 32(1):50–55

    Article  CAS  PubMed  Google Scholar 

  32. Peto V, Jenkinson C, Fitzpatrick R et al (1995) The development and validation of a short measure of functioning and well being for individuals with Parkinson’s disease. Qual Life Res 4(3):241–248

    Article  CAS  PubMed  Google Scholar 

  33. Mlinac ME, Feng MC (2016) Assessment of activities of daily living, self-care, and independence. Arch Clin Neuropsychol 31(6):506–516

    Article  PubMed  Google Scholar 

  34. Cressatti M, Juwara L, Galindez JM et al (2020) Salivary microR-153 and microR-223 levels as potential diagnostic biomarkers of idiopathic Parkinson’s disease. Mov Disord 35(3):468–477

    Article  CAS  PubMed  Google Scholar 

  35. Marquis P, De La Loge C, Dubois D et al (2005) Development and validation of the patient assessment of constipation quality of life questionnaire. Scand J Gastroenterol 40(5):540–551

    Article  PubMed  Google Scholar 

  36. Agachan F, Chen T, Pfeifer J et al (1996) A constipation scoring system to simplify evaluation and management of constipated patients. Dis Colon Rectum 39(6):681–685

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Ren J, Pan C et al (2021) Serum miR-214 serves as a biomarker for prodromal Parkinson’s disease. Front Aging Neurosci 13:700959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Knudsen K, Krogh K, Østergaard K et al (2017) Constipation in parkinson’s disease: subjective symptoms, objective markers, and new perspectives. Mov Disord 32(1):94–105

    Article  PubMed  Google Scholar 

  39. Gan J, Wan Y, Shi J et al (2018) A survey of subjective constipation in Parkinson’s disease patients in Shanghai and literature review. BMC Neurol 18(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vriesman MH, Koppen IJN, Camilleri M et al (2020) Management of functional constipation in children and adults. Nat Rev Gastroenterol Hepatol 17(1):21–39

    Article  PubMed  Google Scholar 

  41. Eslick GD (2012) Gastrointestinal symptoms and obesity: a meta-analysis. Obes Rev 13(5):469–479

    Article  CAS  PubMed  Google Scholar 

  42. Wu F, Zikusoka M, Trindale A et al (2008) MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology 135:1624–1635

    Article  CAS  PubMed  Google Scholar 

  43. Zhou Q, Costinean S, Croce CM et al (2015) MicroRNA 29 targets nuclear factor-kappaB-repressing factor and Claudin 1 to increase intestinal permeability. Gastroenterology 148:158-169.e8

    Article  CAS  PubMed  Google Scholar 

  44. Zhou Q, Souba WW, Croce C et al (2010) MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut 59:775–784

    Article  CAS  PubMed  Google Scholar 

  45. Leta V, Urso D, Batzu L et al (2021) Constipation is associated with development of cognitive impairment in de novo Parkinson’s disease: a longitudinal analysis of two international cohorts. J Parkinsons Dis 11(3):1209–1219

    Article  CAS  PubMed  Google Scholar 

  46. Pagano G, Yousaf T, Wilson H et al (2018) Constipation is not associated with dopamine transporter pathology in early drug-naïve patients with Parkinson’s disease. Eur J Neurol 25(2):307–312

    Article  CAS  PubMed  Google Scholar 

  47. Neikrug AB, Avanzino JA, Liu L et al (2014) Parkinson’s disease and REM sleep behavior disorder result in increased non-motor symptoms. Sleep Med 15:959–966

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fereshtehnejad SM, Romenets SR, Anang JB et al (2015) New clinical subtypes of Parkinson disease and their longitudinal progression: a prospective cohort comparison with other phenotypes. JAMA Neurol 72:863–873

    Article  PubMed  Google Scholar 

  49. Kashihara K, Imamura T, Shinya T (2010) Cardiac 123I-MIBG uptake is reduced more markedly in patients with REM sleep behavior disorder than in those with early stage Parkinson’s disease. Parkinsonism Relat Disord 16:252–255

    Article  PubMed  Google Scholar 

  50. Horsager J, Andersen KB, Knudsen K et al (2020) Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143(10):3077–3088

    Article  PubMed  Google Scholar 

  51. Fearon C, Lang AE, Espay AJ (2021) The logic and pitfalls of Parkinson’s disease as “brain-first” versus “body-first” subtypes. Mov Disord 36(3):594–598

    Article  PubMed  Google Scholar 

  52. Gjerstad MD, Boeve B, Wentzel-Larsen T et al (2008) Occurrence and clinical correlates of REM sleep behaviour disorder in patients with Parkinson’s disease over time. J Neurol Neurosurg Psychiatry 79(4):387–391

    Article  CAS  PubMed  Google Scholar 

  53. Hepp DH, Ruiter AM, Galis Y et al (2013) Pedunculopontine cholinergic cell loss in hallucinating Parkinson disease patients but not in dementia with Lewy bodies patients. J Neuropathol Exp Neurol 72(12):1162–1170

    Article  CAS  Google Scholar 

  54. Geddes MR, Tie Y, Gabrieli JD et al (2016) Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder. Cortex 74:96–106

    Article  PubMed  Google Scholar 

  55. Xiao-Ling Q, Gang C, Bo L et al (2020) Depression is associated with constipation in patients with Parkinson’s disease. Front Neurol 11:567574

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sun BH, Wang T, Li NY et al (2021) Clinical features and relative factors of constipation in a cohort of Chinese patients with Parkinson’s disease. World J Gastrointest Pharmacol Ther 12(1):21–31

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu B, Fang F, Pedersen NL et al (2017) Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology 88:1996–2002

    Article  PubMed  PubMed Central  Google Scholar 

  58. Svensson E, Horváth-Puhó E, Thomsen RW et al (2015) Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol 78(4):522–529

    Article  PubMed  Google Scholar 

  59. Camacho M, Macleod AD, Maple-Grødem J et al (2021) Early constipation predicts faster dementia onset in Parkinson’s disease. NPJ Parkinsons Dis 7(1):45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bansal NR, Paul BS, Paul G et al (2022) Gender differences and impact of autonomic disturbance on fatigue and quality of life in Parkinson’s disease. Neurol India 70(1):203–208

    PubMed  Google Scholar 

  61. Song W, Guo X, Chen K et al (2014) The impact of non-motor symptoms on the Health-Related Quality of Life of Parkinson’s disease patients from Southwest China. Parkinsonism Relat Disord 20(2):149–152

    Article  PubMed  Google Scholar 

  62. Pilipovich AA, Vorob’eva OV, Makarov SA et al (2022) Gastrointestinal dysfunction impact on life quality in a cohort of Russian patients with Parkinson’s disease I-III H&Y stage. Parkinsons Dis 2022:1571801

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sakakibara R, Ogata T, Aiba Y et al (2020) Does depression contribute to the bladder and bowel complaint in Parkinson’s disease patients? Mov Disord Clin Pract 8(2):240–244

    Article  PubMed  PubMed Central  Google Scholar 

  64. Garvey M, Noyes R Jr, Yates W (1990) Frequency of constipation in major depression: relationship to other clinical variables. Psychosomatics 31(2):204–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all participants who contributed to this study. We express our sincere appreciation to the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu.

Ethics declarations

Ethics approval

The studies involving human participants were reviewed and approved by the ethics committee of the Shanghai East hospital affiliated with Tongji University. The patients/participants provided their written informed consent to participate in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Shen, L., Zhao, H. et al. Parkinson’s disease patients combined with constipation tend to have higher serum expression of microRNA 29c, prominent neuropsychiatric disorders, possible RBD conversion, and a substandard quality of life. Neurol Sci 44, 3141–3150 (2023). https://doi.org/10.1007/s10072-023-06793-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06793-x

Keywords

Navigation