Skip to main content
Log in

The prognostic value of caveolin-1 levels in ischemic stroke patients after mechanical thrombectomy

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background and purpose

The impact of serum caveolin-1 (Cav-1) on clinical outcomes in patients after mechanical thrombectomy (MT) is unclear. We aimed to investigate the association between serum cav-1 levels and the 3-month functional outcome.

Methods

We prospectively enrolled and analyzed patients with an anterior circulation large vessel occlusion who underwent MT. Serum cav-1 concentrations were tested after admission. The primary outcome was a 90-day modified Rankin Scale score of 3–6.

Results

Of the 237 recruited patients (mean age, 69.7 ± 12.1 years; 152 male), 131 (55.3%) experienced a 90-day poor outcome. After adjustment for demographic characteristics and other covariates, patients with higher serum Cav-1 levels had a reduced risk of poor outcome at 3 months (Per 1-standard deviation increase; odd ratios [OR], 0.59; 95% confidence interval [CI], 0.39 − 0.89, P = 0.013). Elevated Cav-1 concentrations (Per 1-standard deviation increase; OR, 0.59; 95% CI, 0.40 − 0.88, P = 0.011) were significantly associated with a favorable shift in modified Rankin Scale score distribution. Similar results were confirmed when the Cav-1 levels were analyzed as a categorical variable. Furthermore, the restricted cubic spline showed a linear association between Cav-1 levels and 90-day poor outcome (P = 0.032 for linearity).

Conclusions

Increased serum Cav-1 levels were associated with improved prognosis at 3 months in ischemic stroke patients after MT, suggesting that Cav-1 may be a potential prognostic biomarker for ischemic stroke after reperfusion therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  1. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM et al (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387:1723–1731

    Article  PubMed  Google Scholar 

  2. Rodrigues F, Neves J, Caldeira D, Ferro J, Ferreira J, Costa J (2016) Endovascular treatment versus medical care alone for ischaemic stroke: systematic review and meta-analysis. BMJ 353:i1754

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roaldsen M, Jusufovic M, Berge E, Lindekleiv H (2021) Endovascular thrombectomy and intra-arterial interventions for acute ischaemic stroke. Cochrane Database Syst Rev 6:CD007574

    PubMed  Google Scholar 

  4. Zhang X, Xie Y, Wang H, Yang D, Jiang T, Yuan K et al (2020) Symptomatic intracranial hemorrhage after mechanical thrombectomy in chinese ischemic stroke patients: The ASIAN Score. Stroke 51:2690–2696

    Article  CAS  PubMed  Google Scholar 

  5. Zi W, Wang H, Yang D, Hao Y, Zhang M, Geng Y et al (2017) Clinical effectiveness and safety outcomes of endovascular treatment for acute anterior circulation ischemic stroke in China. Cerebrovasc Dis 44:248–258

    Article  PubMed  Google Scholar 

  6. Zhang X, Peng M, Feng C, Wang H, Gong P, Jiang T et al (2021) Nomogram predicting early neurological improvement in ischaemic stroke patients treated with endovascular thrombectomy. Eur J Neurol 28:152–160

    Article  CAS  PubMed  Google Scholar 

  7. Liu P, Rudick M, Anderson R (2002) Multiple functions of caveolin-1. J Biol Chem 277:41295–41298

    Article  CAS  PubMed  Google Scholar 

  8. Song L, Ge S, Pachter J (2007) Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood 109:1515–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang X, Gong P, Zhao Y, Wan T, Yuan K, Xiong Y et al (2022) Endothelial caveolin-1 regulates cerebral thrombo-inflammation in acute ischemia/reperfusion injury. EBioMedicine 84:104275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jasmin J, Malhotra S, Singh Dhallu M, Mercier I, Rosenbaum D, Lisanti M (2007) Caveolin-1 deficiency increases cerebral ischemic injury. Circ Res 100:721–9

    Article  CAS  PubMed  Google Scholar 

  11. Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W et al (2012) Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem 120:147–156

    Article  CAS  PubMed  Google Scholar 

  12. Tiruppathi C, Shimizu J, Miyawaki-Shimizu K, Vogel S, Bair A, Minshall R et al (2008) Role of NF-kappaB-dependent caveolin-1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide. J Biol Chem 283:4210–4218

    Article  CAS  PubMed  Google Scholar 

  13. Castellanos M, van Eendenburg C, Gubern C, Kádár E, Huguet G, Puig J et al (2018) Low levels of caveolin-1 predict symptomatic bleeding after thrombolytic therapy in patients with acute ischemic stroke. Stroke 49:1525–1527

    Article  CAS  PubMed  Google Scholar 

  14. Sucharew H, Khoury J, Moomaw C, Alwell K, Kissela B, Belagaje S et al (2013) Profiles of the National Institutes of Health Stroke Scale items as a predictor of patient outcome. Stroke 44:2182–2187

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barber P, Demchuk A, Zhang J, Buchan A (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet. 355:1670–4

    Article  CAS  PubMed  Google Scholar 

  16. Adams HJ, Bendixen B, Kappelle L, Biller J, Love B, Gordon D (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 24:35–41

    Article  PubMed  Google Scholar 

  17. Zaidat OO, Yoo AJ, Khatri P, Tomsick TA, von Kummer R, Saver JL et al (2013) Recommendations on angiographic revascularization grading standards for acute ischemic stroke: a consensus statement. Stroke 44:2650–2663

    Article  PubMed  PubMed Central  Google Scholar 

  18. von Kummer R, Broderick JP, Campbell BC, Demchuk A, Goyal M, Hill MD et al (2015) The Heidelberg bleeding classification: classification of bleeding events after ischemic stroke and reperfusion Therapy. Stroke 46:2981–2986

    Article  Google Scholar 

  19. Alves H, Treurniet K, Dutra B, Jansen I, Boers A, Santos E et al (2018) Associations between collateral status and thrombus characteristics and their impact in anterior circulation stroke. Stroke 49:391–396

    Article  PubMed  Google Scholar 

  20. Pencina M, D’Agostino RS, D’Agostino RJ, Vasan R (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172

    Article  PubMed  Google Scholar 

  21. Nogueira RG, Liebeskind DS, Sung G, Duckwiler G, Smith WS, MERCI; Multi MERCI Writing Committee (2009) Predictors of good clinical outcomes, mortality, and successful revascularization in patients with acute ischemic stroke undergoing thrombectomy: pooled analysis of the Mechanical Embolus Removal in Cerebral Ischemia (MERCI) and Multi MERCI Trials. Stroke 40:3777–83

    Article  PubMed  Google Scholar 

  22. Boisseau W, Desilles J, Fahed R, Kyheng M, Zuber K, Sabben C et al (2019) Neutrophil count predicts poor outcome despite recanalization after endovascular therapy. Neurology 93(5):e467–e475

    Article  CAS  PubMed  Google Scholar 

  23. Liebeskind D, Tomsick T, Foster L, Yeatts S, Carrozzella J, Demchuk A et al (2014) Collaterals at angiography and outcomes in the Interventional Management of Stroke (IMS) III trial. Stroke 45:759–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bang O, Saver J, Kim S, Kim G, Chung C, Ovbiagele B et al (2011) Collateral flow averts hemorrhagic transformation after endovascular therapy for acute ischemic stroke. Stroke 42:2235–2239

    Article  PubMed  Google Scholar 

  25. Shuaib A, Butcher K, Mohammad A, Saqqur M, Liebeskind D (2011) Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol 10:909–921

    Article  PubMed  Google Scholar 

  26. Virgintino D, Robertson D, Errede M, Benagiano V, Tauer U, Roncali L et al (2002) Expression of caveolin-1 in human brain microvessels. Neuroscience 115:145–152

    Article  CAS  PubMed  Google Scholar 

  27. Xu L, Guo R, Xie Y, Ma M, Ye R, Liu X (2015) Caveolae: molecular insights and therapeutic targets for stroke. Expert Opin Ther Targets 19:633–650

    Article  CAS  PubMed  Google Scholar 

  28. Niesman I, Schilling J, Shapiro L, Kellerhals S, Bonds J, Kleschevnikov A et al (2014) Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation 11:39

    Article  PubMed  PubMed Central  Google Scholar 

  29. Couet J, Li S, Okamoto T, Ikezu T, Lisanti M (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272:6525–33

    Article  CAS  PubMed  Google Scholar 

  30. Shiroto T, Romero N, Sugiyama T, Sartoretto J, Kalwa H, Yan Z et al (2014) Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. PLoS ONE 9:e87871

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

QW and XZ designed the study. QW, HC and YE interpreted data and wrote the manuscript. QW, HC, YE, SW, and SC did the statistical analyses. HL, MW, JZ and YX revised the manuscript. QW wrote the initial manuscript. XZ supervised the study. All authors have made an intellectual contribution to the manuscript and approved the submission.

Corresponding author

Correspondence to Xiaohao Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval and Informed consent statement

The study was approved by the ethics committee of Nanjing First Hospital, and written informed consents were obtained from all patients.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Cao, H., E, Y. et al. The prognostic value of caveolin-1 levels in ischemic stroke patients after mechanical thrombectomy. Neurol Sci 44, 2081–2086 (2023). https://doi.org/10.1007/s10072-023-06606-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06606-1

Keywords

Navigation