Skip to main content
Log in

Cytokines/chemokines and immune checkpoint molecules in anti-leucine-rich glioma-inactivated 1 encephalitis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

We aimed to investigate levels of cytokines/chemokines and immune checkpoint molecules in patients with anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis.

Methods

The study recruited 12 patients with anti-LGI1 encephalitis and six non-inflammatory controls from the Qilu Hospital of Shandong University treated between January 2019 and December 2020. Serum levels of 30 cytokines/chemokines and 10 checkpoint molecules were measured in participants of both the groups.

Results

In contrast to those in the control group, 24 cytokines/chemokines and 5 immune checkpoint molecules were differentially expressed in patients with anti-LGI1 encephalitis, with 14 cytokines being upregulated and 10 being downregulated. There were 1033 enriched biological processes and 61 enriched Kyoto Encyclopedia of Genes and Genomes signaling pathways.

Conclusion

A wide range of cytokines/chemokines and immune checkpoint molecules are implicated in immune regulation in anti-LGI1 encephalitis, indicating that they may serve as important targets in the development and treatment of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Qiao S, Wu HK, Liu LL et al (2021) Characteristics and prognosis of autoimmune encephalitis in the east of china: a multi-center study. Front Neurol 12:642078. https://doi.org/10.3389/fneur.2021.642078

    Article  PubMed  PubMed Central  Google Scholar 

  2. Graus F, Titulaer MJ, Balu R et al (2016) A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 15:391–404. https://doi.org/10.1016/S1474-4422(15)00401-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Titulaer MJ, Day GS (2021) Autoimmune encephalitis in first episode psychoses: all smoke and no fire? Neurology 97:16–17. https://doi.org/10.1212/WNL.0000000000012195

    Article  PubMed  Google Scholar 

  4. Qiao S, Wu HK, Liu LL et al (2021) Clinical features and long-term outcomes of anti-leucine-rich glioma-inactivated 1 encephalitis: a multi-center study. Neuropsychiatr Dis Treat 17:203–212. https://doi.org/10.2147/NDT.S292343

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ye Z, Jin Y, Xu H et al (2021) Effectiveness of immunotherapy in a CASPR2 and LGI1 antibody-positive elderly patient with Isaacs’ syndrome: a case study. Acta Neurol Belg 121:577–579. https://doi.org/10.1007/s13760-020-01446-8

    Article  PubMed  Google Scholar 

  6. Li X, Yuan J, Liu L, Hu W (2019) Antibody-LGI 1 autoimmune encephalitis manifesting as rapidly progressive dementia and hyponatremia: a case report and literature review. BMC Neurol 19:19. https://doi.org/10.1186/s12883-019-1251-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ciano-Petersen NL, Cabezudo-Garcia P, Muniz-Castrillo S, Honnorat J, Serrano-Castro PJ, Oliver-Martos B (2021) Current status of biomarkers in anti-n-methyl-d-aspartate receptor encephalitis. Int J Mol Sci 22.https://doi.org/10.3390/ijms222313127

  8. Kothur K, Wienholt L, Mohammad SS et al (2016) Utility of CSF cytokine/chemokines as markers of active intrathecal inflammation: comparison of demyelinating, anti-NMDAR and enteroviral encephalitis. PLoS One 11:e0161656. https://doi.org/10.1371/journal.pone.0161656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fominykh V, Brylev L, Gaskin V et al (2019) Neuronal damage and neuroinflammation markers in patients with autoimmune encephalitis and multiple sclerosis. Metab Brain Dis 34:1473–1485. https://doi.org/10.1007/s11011-019-00452-x

    Article  CAS  PubMed  Google Scholar 

  10. Zou C, Pei S, Yan W et al (2020) Cerebrospinal fluid osteopontin and inflammation-associated cytokines in patients with anti-N-Methyl-D-aspartate receptor encephalitis. Front Neurol 11:519692. https://doi.org/10.3389/fneur.2020.519692

    Article  PubMed  PubMed Central  Google Scholar 

  11. Leypoldt F, Hoftberger R, Titulaer MJ et al (2015) Investigations on CXCL13 in anti-N-methyl-D-aspartate receptor encephalitis: a potential biomarker of treatment response. JAMA Neurol 72:180–186. https://doi.org/10.1001/jamaneurol.2014.2956

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin YT, Yang X, Lv JW, Liu XW, Wang SJ (2019) CXCL13 is a biomarker of anti-leucine-rich glioma-inactivated protein 1 encephalitis patients. Neuropsychiatr Dis Treat 15:2909–2915. https://doi.org/10.2147/NDT.S222258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Velasco R, Villagran M, Jove M et al (2021) Encephalitis induced by immune checkpoint inhibitors: a systematic review. JAMA Neurol 78:864–873. https://doi.org/10.1001/jamaneurol.2021.0249

    Article  PubMed  Google Scholar 

  14. Vogrig A, Muniz-Castrillo S, Joubert B et al (2021) Cranial nerve disorders associated with immune checkpoint inhibitors. Neurology 96:e866–e875. https://doi.org/10.1212/WNL.0000000000011340

    Article  CAS  PubMed  Google Scholar 

  15. Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R (2019) PD-1/PD-L1 immune checkpoint: potential target for cancer therapy. J Cell Physiol 234:1313–1325. https://doi.org/10.1002/jcp.27172

    Article  CAS  PubMed  Google Scholar 

  16. Chakrabarti R, Kapse B, Mukherjee G (2019) Soluble immune checkpoint molecules: serum markers for cancer diagnosis and prognosis. Cancer Rep 2:e1160. https://doi.org/10.1002/cnr2.1160

    Article  Google Scholar 

  17. Becher B, Spath S, Goverman J (2017) Cytokine networks in neuroinflammation. Nat Rev Immunol 17:49–59. https://doi.org/10.1038/nri.2016.123

    Article  CAS  PubMed  Google Scholar 

  18. Kothur K, Wienholt L, Brilot F, Dale RC (2016) CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: a systematic review. Cytokine 77:227–237. https://doi.org/10.1016/j.cyto.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  19. Nicolás LC, Sergio MC, Cristina B et al (2022) Cytokine dynamics and targeted immunotherapies in autoimmune encephalitis. Brain Commun 4:fcac196. https://doi.org/10.1093/braincomms/fcac196

    Article  Google Scholar 

  20. Péter K, Alexander G, Karina G et al (2020) Serum and CSF cytokine levels mirror different neuroimmunological mechanisms in patients with LGI1 and Caspr2 encephalitis. Cytokine 135:155226. https://doi.org/10.1016/j.cyto.2020.155226

    Article  CAS  Google Scholar 

  21. Canan U, Erdem T, Murat K et al (2012) Comparison of the cytokine profiles of patients with neuronal-antibody-associated central nervous system disorders. Int J Neurosci 122:284–289. https://doi.org/10.3109/00207454.2011

    Article  Google Scholar 

  22. Griffith SP, Malpas CB, Alpitsis R, O’Brien TJ, Monif M (2020) The neuropsychological spectrum of anti-LGI1 antibody mediated autoimmune encephalitis. J Neuroimmunol 345:577271. https://doi.org/10.1016/j.jneuroim.2020.577271

    Article  CAS  PubMed  Google Scholar 

  23. Uzawa A, Mori M, Arai K et al (2010) Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler 16:1443–1452. https://doi.org/10.1177/1352458510379247

    Article  CAS  PubMed  Google Scholar 

  24. Matsushita T, Tateishi T, Isobe N et al (2013) Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS One 8:e61835. https://doi.org/10.1371/journal.pone.0061835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang H, Wang K, Zhong X et al (2012) Cerebrospinal fluid BAFF and APRIL levels in neuromyelitis optica and multiple sclerosis patients during relapse. J Clin Immunol 32:1007–1011. https://doi.org/10.1007/s10875-012-9709-9

    Article  CAS  PubMed  Google Scholar 

  26. Alvarez E, Piccio L, Mikesell RJ et al (2013) CXCL13 is a biomarker of inflammation in multiple sclerosis, neuromyelitis optica, and other neurological conditions. Mult Scler 19:1204–1208. https://doi.org/10.1177/1352458512473362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu J, Liu L, Kang W et al (2020) Cytokines/chemokines: potential biomarkers for non-paraneoplastic anti-n-methyl-d-aspartate receptor encephalitis. Front Neurol 11:582296. https://doi.org/10.3389/fneur.2020.582296

    Article  PubMed  PubMed Central  Google Scholar 

  28. Deng B, Liu XN, Li X, Zhang X, Quan C, Chen XJ (2017) Raised cerebrospinal fluid BAFF and APRIL levels in anti-N-methyl-d-aspartate receptor encephalitis: correlation with clinical outcome. J Neuroimmunol 305:84–91. https://doi.org/10.1016/j.jneuroim.2017.01.012

    Article  CAS  PubMed  Google Scholar 

  29. Liba Z, Kayserova J, Elisak M et al (2016) Anti-N-methyl-D-aspartate receptor encephalitis: the clinical course in light of the chemokine and cytokine levels in cerebrospinal fluid. J Neuroinflammation 13:55. https://doi.org/10.1186/s12974-016-0507-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu J, Li Y, Zheng D et al (2019) Elevated serum and cerebrospinal fluid CD138 in patients with anti-n-methyl-d-aspartate receptor encephalitis. Front Mol Neurosci 12:116. https://doi.org/10.3389/fnmol.2019.00116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Levraut M, Bourg V, Capet N et al (2021) Cerebrospinal fluid IL-17A could predict acute disease severity in non-NMDA-receptor autoimmune encephalitis. Front Immunol 12:673021. https://doi.org/10.3389/fimmu.2021.673021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Orabona C, Mondanelli G, Puccetti P, Grohmann U (2018) Immune checkpoint molecules, personalized immunotherapy, and autoimmune diabetes. Trends Mol Med 24:931–941. https://doi.org/10.1016/j.molmed.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  33. Xu Y, Fu Y, Zhu B, Wang J, Zhang B (2020) Predictive biomarkers of immune checkpoint inhibitors-related toxicities. Front Immunol 11:2023. https://doi.org/10.3389/fimmu.2020.02023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yordduangjun N, Dishion E, McKnight CA, Caplan JP (2021) Immune checkpoint inhibitor-associated autoimmune encephalitis. J Acad Consult Liaison Psychiatry 62:115–118. https://doi.org/10.1016/j.psym.2020.08.011

    Article  PubMed  Google Scholar 

  35. Nalbantoglu M, Altunrende B, Tuncer OG, Akman G (2021) Autoimmune encephalitis after treatment of Hodgkin’s lymphoma with the immune checkpoint inhibitor nivolumab. Noro Psikiyatr Ars 58:163–165. https://doi.org/10.29399/npa.23353

    Article  PubMed  Google Scholar 

  36. Williams TJ, Benavides DR, Patrice KA et al (2016) Association of autoimmune encephalitis with combined immune checkpoint inhibitor treatment for metastatic cancer. JAMA Neurol 73:928–933. https://doi.org/10.1001/jamaneurol.2016.1399

    Article  PubMed  Google Scholar 

  37. Schneider S, Potthast S, Komminoth P, Schwegler G, Bohm S (2017) PD-1 checkpoint inhibitor associated autoimmune encephalitis. Case Rep Oncol 10:473–478. https://doi.org/10.1159/000477162

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sakuishi K, Ngiow SF, Sullivan JM et al (2013) TIM3(+)FOXP3(+) regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncoimmunology 2:e23849. https://doi.org/10.4161/onci.23849

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ralser DJ, Klumper N, Gevensleben H et al (2021) Molecular and immune correlates of PDCD1 (PD-1), PD-L1 (CD274), and PD-L2 (PDCD1LG2) DNA methylation in triple negative breast cancer. J Immunother 44:319–324. https://doi.org/10.1097/CJI.0000000000000384

    Article  CAS  PubMed  Google Scholar 

  40. Hellbacher E, Sundstrom C, Molin D, Baecklund E, Hollander P (2022) Expression of PD-1, PD-L1 and PD-L2 in lymphomas in patients with pre-existing rheumatic diseases-a possible association with high rheumatoid arthritis disease activity. Cancers (Basel) 14.https://doi.org/10.3390/cancers14061509

  41. Rieder SA, Wang J, White N et al (2021) B7–H7 (HHLA2) inhibits T-cell activation and proliferation in the presence of TCR and CD28 signaling. Cell Mol Immunol 18:1503–1511. https://doi.org/10.1038/s41423-020-0361-7

    Article  CAS  PubMed  Google Scholar 

  42. Nunes JA, Olive D (2022) CD28 costimulation promotes an antitumor CD8(+) T cell response in myeloid antigen-presenting cell niches. Cell Mol Immunol 19:147–149. https://doi.org/10.1038/s41423-021-00818-1

    Article  CAS  PubMed  Google Scholar 

  43. Estrada-Capetillo L, Aragoneses-Fenoll L, Dominguez-Soto A et al (2021) CD28 is expressed by macrophages with anti-inflammatory potential and limits their T-cell activating capacity. Eur J Immunol 51:824–834. https://doi.org/10.1002/eji.202048806

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all participants and their families for their cooperation.

Funding

This work was supported by the National Natural Science Foundation (Grant number 81873786).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-wu Liu.

Ethics declarations

Ethics approval

Approval was obtained from the ethics committee of the Qilu Hospital of Shandong University (No. KYLL-202008–044). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 117 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, S., Zhang, Sc., Li, Hy. et al. Cytokines/chemokines and immune checkpoint molecules in anti-leucine-rich glioma-inactivated 1 encephalitis. Neurol Sci 44, 1017–1029 (2023). https://doi.org/10.1007/s10072-022-06526-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06526-6

Keywords

Navigation