Skip to main content
Log in

Multiparametric identification of subclinical atrial fibrillation after an embolic stroke of undetermined source

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Subclinical atrial fibrillation (SCAF) may represent a cause of embolic stroke of undetermined source (ESUS) and its detection has important implications for secondary prevention with anticoagulation. Indications to implantable cardiac monitors (ICM) include SCAF detection. The aims of this study were to (1) evaluate the frequency of ICM-detected SCAF; (2) determine predictors of SCAF; and (3) identify patients who would benefit most from ICM implantation.

Methods

Between February 2017 and November 2020, all consecutive patients referred for ICM implantation after a diagnosis of ESUS and without previous history of atrial fibrillation or atrial flutter were included in this study. SCAF was diagnosed if the ICM electrogram demonstrated an episode of irregularly irregular rhythm without distinct P waves lasting > 2 min.

Results

We enrolled 109 patients (age 66, SD = 13 years; 36% females). During a median follow-up of 19.2 (IQR 11.0–27.5) months, SCAF episodes were detected in 36 (33%) patients. Only abnormal P wave terminal force in lead V1, left atrial end-systolic indexed volume > 34 ml/m2, and BMI > 25 kg/m2 were independently associated with an increased risk of SCAF (HR 2.44, 95% CI 1.14–5.21, p = 0.021; HR 2.39, 95% CI 1.11–5.13, p = 0.026; and HR 2.64, 95% CI 1.06–6.49, p = 0.036 respectively). The ROC curve showed that the presence of all three parameters had the best accuracy (74%) to predict SCAF detection (sensitivity 39%, specificity 91%).

Conclusion

A multiparametric evaluation has the best accuracy to predict SCAF in ESUS patients and may help identifying those who would benefit most from ICM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Marini C, De Santis F, Sacco S et al (2005) Contribution of atrial fibrillation to incidence and outcome of ischemic stroke: results from a population-based study. Stroke 36(6):1115–1119. https://doi.org/10.1161/01.STR.0000166053.83476.4a

    Article  PubMed  Google Scholar 

  2. Sposato LA, Cipriano LE, Saposnik G, Ruíz Vargas E, Riccio PM, Hachinski V (2015) Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. Lancet Neurol 14(4):377–387. https://doi.org/10.1016/S1474-4422(15)70027-X

    Article  PubMed  Google Scholar 

  3. Krishnamurthi RV, Barker-Collo S, Parag V et al (2018) Stroke incidence by major pathological type and ischemic subtypes in the Auckland regional community stroke studies: changes between 2002 and 2011. Stroke 49(1):3–10. https://doi.org/10.1161/STROKEAHA.117.019358

    Article  PubMed  Google Scholar 

  4. Li L, Yiin GS, Geraghty OC et al (2015) Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke: a population-based study. Lancet Neurol 14(9):903–913. https://doi.org/10.1016/S1474-4422(15)00132-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hart RG, Diener HC, Coutts SB et al (2014) Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol 13(4):429–438. https://doi.org/10.1016/S1474-4422(13)70310-7

    Article  PubMed  Google Scholar 

  6. Hannon N, Sheehan O, Kelly L et al (2010) Stroke associated with atrial fibrillation–incidence and early outcomes in the north Dublin population stroke study. Cerebrovasc Dis 29(1):43–49. https://doi.org/10.1159/000255973

    Article  PubMed  Google Scholar 

  7. Ziegler PD, Koehler JL, Mehra R (2006) Comparison of continuous versus intermittent monitoring of atrial arrhythmias. Heart Rhythm 3(12):1445–1452. https://doi.org/10.1016/j.hrthm.2006.07.030

    Article  PubMed  Google Scholar 

  8. Charitos EI, Stierle U, Ziegler PD et al (2012) A comprehensive evaluation of rhythm monitoring strategies for the detection of atrial fibrillation recurrence: insights from 647 continuously monitored patients and implications for monitoring after therapeutic interventions [published correction appears in Circulation. Circulation 126(7):806–814. https://doi.org/10.1161/CIRCULATIONAHA.112.098079

    Article  PubMed  Google Scholar 

  9. Sanna T, Diener HC, Passman RS et al (2014) Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 370(26):2478–2486. https://doi.org/10.1056/NEJMoa1313600

    Article  CAS  PubMed  Google Scholar 

  10. Tsivgoulis G, Katsanos AH, Köhrmann M et al (2019) Duration of implantable cardiac monitoring and detection of atrial fibrillation in ischemic stroke patients: a systematic review and meta-analysis. J Stroke 21(3):302–311. https://doi.org/10.5853/jos.2019.01067

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hindricks G, Potpara T, Dagres N et al (2021) 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 42(5):373–498. https://doi.org/10.1093/eurheartj/ehaa612

    Article  PubMed  Google Scholar 

  12. Li YG, Bisson A, Bodin A et al (2019) C2 HEST score and prediction of incident atrial fibrillation in poststroke patients: a French nationwide study. J Am Heart Assoc 8(13):e012546. https://doi.org/10.1161/JAHA.119.012546

    Article  PubMed  PubMed Central  Google Scholar 

  13. Acampa M, Lazzerini PE, Guideri F et al (2019) Electrocardiographic predictors of silent atrial fibrillation in cryptogenic stroke. Heart Lung Circ 28(11):1664–1669. https://doi.org/10.1016/j.hlc.2018.10.020

    Article  PubMed  Google Scholar 

  14. Acampa M, Lazzerini PE, Martini G (2018) Atrial cardiopathy and sympatho-vagal imbalance in cryptogenic stroke: pathogenic mechanisms and effects on electrocardiographic markers. Front Neurol 9:469. https://doi.org/10.3389/fneur.2018.00469

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bayés de Luna A, Escobar-Robledo LA, Aristizabal D et al (2018) Atypical advanced interatrial blocks: definition and electrocardiographic recognition. J Electrocardiol. 51(6):1091–1093. https://doi.org/10.1016/j.jelectrocard.2018.09.004

    Article  PubMed  Google Scholar 

  16. Ziegler PD, Rogers JD, Ferreira SW et al (2017) Long-term detection of atrial fibrillation with insertable cardiac monitors in a real-world cryptogenic stroke population. Int J Cardiol 244:175–179. https://doi.org/10.1016/j.ijcard.2017.06.039

    Article  PubMed  Google Scholar 

  17. Triantafyllou S, Katsanos AH, Dilaveris P et al (2020) Implantable cardiac monitoring in the secondary prevention of cryptogenic stroke. Ann Neurol 88(5):946–955. https://doi.org/10.1002/ana.25886

    Article  PubMed  Google Scholar 

  18. Cuadrado-Godia E, Benito B, Ois A et al (2020) Ultra-early continuous cardiac monitoring improves atrial fibrillation detection and prognosis of patients with cryptogenic stroke. Eur J Neurol 27(2):244–250. https://doi.org/10.1111/ene.14061

    Article  CAS  PubMed  Google Scholar 

  19. Öner A, Lips T, Walter U et al (2020) Detection of arrhythmia using an implantable cardiac monitor following a cryptogenic stroke: a single-center observational study. Eur J Med Res. 25(1):25. https://doi.org/10.1186/s40001-020-00424-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ungar A, Pescini F, Rafanelli M et al (2021) Detection of subclinical atrial fibrillation after cryptogenic stroke using implantable cardiac monitors. Eur J Intern Med 92:86–93. https://doi.org/10.1016/j.ejim.2021.06.022

    Article  CAS  PubMed  Google Scholar 

  21. Ricci B, Chang AD, Hemendinger M et al (2018) A simple score that predicts paroxysmal atrial fibrillation on outpatient cardiac monitoring after embolic stroke of unknown source. J Stroke Cerebrovasc Dis 27(6):1692–1696. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.01.028

    Article  PubMed  Google Scholar 

  22. Melis F, Guido M, Amellone C et al (2021) Prevalence and predictors of atrial fibrillation in patients with embolic stroke of undetermined source: a real-life single-center retrospective study. Neurol Sci 42(9):3707–3714. https://doi.org/10.1007/s10072-020-04963-9

    Article  PubMed  Google Scholar 

  23. Sethi A, Buescher M, Garberich R, Hoffman E, Langeberg T, Abdelhadi R, Katsiyiannis W, Moore J, Tang C, Sengupta J (2017) Evolution of implantable cardiac monitors: a comparison of Reveal XT and LINQ patient selection, arrhythmia detection, and clinical outcomes. J Minneapolis Heart Inst Found: Fall/Winter 1(2):130–135

    Article  Google Scholar 

  24. Edwards SJ, Wakefield V, Jhita T, Kew K, Cain P, Marceniuk G (2020) Implantable cardiac monitors to detect atrial fibrillation after cryptogenic stroke: a systematic review and economic evaluation. Health Technol Assess 24(5):1–184. https://doi.org/10.3310/hta24050

    Article  PubMed  PubMed Central  Google Scholar 

  25. Haeusler KG, Gröschel K, Köhrmann M et al (2018) Expert opinion paper on atrial fibrillation detection after ischemic stroke. Clin Res Cardiol 107(10):871–880. https://doi.org/10.1007/s00392-018-1256-9

    Article  PubMed  Google Scholar 

  26. Thijs VN, Brachmann J, Morillo CA et al (2016) Predictors for atrial fibrillation detection after cryptogenic stroke: Results from CRYSTAL AF. Neurology 86(3):261–269. https://doi.org/10.1212/WNL.0000000000002282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poli S, Diedler J, Härtig F et al (2016) Insertable cardiac monitors after cryptogenic stroke–a risk factor based approach to enhance the detection rate for paroxysmal atrial fibrillation. Eur J Neurol 23(2):375–381. https://doi.org/10.1111/ene.12843

    Article  CAS  PubMed  Google Scholar 

  28. Kamel H, Okin PM, Elkind MS, Iadecola C (2016) Atrial fibrillation and mechanisms of stroke: time for a new model. Stroke 47(3):895–900. https://doi.org/10.1161/STROKEAHA.115.012004

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kreimer F, Aweimer A, Pflaumbaum A, Mügge A, Gotzmann M (2021) Impact of P-wave indices in prediction of atrial fibrillation-Insight from loop recorder analysis. Ann Noninvasive Electrocardiol 26(5):e12854. https://doi.org/10.1111/anec.12854

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mendieta G, Guasch E, Weir D et al (2020) Advanced interatrial block: a predictor of covert atrial fibrillation in embolic stroke of undetermined source. J Electrocardiol 58:113–118. https://doi.org/10.1016/j.jelectrocard.2019.11.050

    Article  PubMed  Google Scholar 

  31. Marks D, Ho R, Then R et al (2021) Real-world experience with implantable loop recorder monitoring to detect subclinical atrial fibrillation in patients with cryptogenic stroke: The value of p wave dispersion in predicting arrhythmia occurrence. Int J Cardiol 327:86–92. https://doi.org/10.1016/j.ijcard.2020.11.019

    Article  PubMed  Google Scholar 

  32. Li TYW, Yeo LLL, Ho JSY et al (2021) Association of electrocardiographic P-wave markers and atrial fibrillation in embolic stroke of undetermined source. Cerebrovasc Dis 50(1):46–53. https://doi.org/10.1159/000512179

    Article  PubMed  Google Scholar 

  33. Huang Z, Zheng Z, Wu B et al (2020) Predictive value of P wave terminal force in lead V1 for atrial fibrillation: a meta-analysis. Ann Noninvasive Electrocardiol 25(4):e12739. https://doi.org/10.1111/anec.12739

    Article  PubMed  PubMed Central  Google Scholar 

  34. Okin PM, Kamel H, Kjeldsen SE, Devereux RB (2016) Electrocardiographic left atrial abnormalities and risk of incident stroke in hypertensive patients with electrocardiographic left ventricular hypertrophy. J Hypertens 34(9):1831–1837. https://doi.org/10.1097/HJH.0000000000000989

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Bertaglia.

Ethics declarations

Ethical approval

 The study protocol was approved by the local ethic committees of the two institution.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 142 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Monte, A., Rivezzi, F., Giacomin, E. et al. Multiparametric identification of subclinical atrial fibrillation after an embolic stroke of undetermined source. Neurol Sci 44, 979–988 (2023). https://doi.org/10.1007/s10072-022-06501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06501-1

Keywords

Navigation