Skip to main content
Log in

Efficacy of short pulse and conventional deep brain stimulation in Parkinson’s disease: a systematic review and meta-analysis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Deep brain stimulation (DBS) is a common treatment for Parkinson’s disease. However, the clinical efficacy of short pulse width DBS (spDBS) compared with conventional DBS (cDBS) is still unknown.

Objective

This meta-analysis investigated the effectiveness of spDBS versus cDBS in patients with PD.

Methods

Four databases (PubMed, Cochrane, Web of Science, and Embase) were independently searched until October 2021 by two reviewers. We utilized the following scales and items: therapeutic windows (TW), efficacy threshold, side effect threshold, Movement Disorder Society–Sponsored Revision Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part III off-medication score, Speech Intelligence Test (SIT), and Freezing of Gait Questionnaire (FOG-Q).

Results

The analysis included seven studies with a total of 87 patients. The results indicated that spDBS significantly widened the therapeutic windows (0.99, 95% CI = 0.61 to 1.38) while increasing the threshold amplitudes of side effects (2.25, 95% CI = 1.69 to 2.81) and threshold amplitudes of effects (1.60, 95% CI = 0.84 to 2.36). There was no statistically significant difference in UPDRS part III, SIT, and FOG-Q scores between spDBS and cDBS groups, suggesting that treatment with both cDBS and spDBS may result in similar effects of improved dysarthria and gait disorders.

Conclusions

Compared with cDBS, spDBS is effective in expanding TW. Both types of deep brain stimulation resulted in improved gait disorders and speech intelligibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The corresponding authors have absolute access to all the research data and hold the copyright for the work reported in this study.

References

  1. Opara J, Małecki A, Małecka E, Socha T (2017) Motor assessment in Parkinson`s disease. Ann Agric Environ Med 24:411–415. https://doi.org/10.5604/12321966.1232774

    Article  PubMed  Google Scholar 

  2. GBD 2016 Parkinson's Disease Collaborators (2018) Global, regional, and national burden of Parkinson's disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17: 939–953. https://doi.org/10.1016/s1474-4422(18)30295-3

  3. Williams A, Gill S, Varma T, Jenkinson C, Quinn N, Mitchell R, Scott R, Ives N, Rick C, Daniels J, Patel S, Wheatley K (2010) Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol 9:91–581. https://doi.org/10.1016/s1474-4422(10)70093-4

    Article  CAS  Google Scholar 

  4. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ Jr, Rothlind J, Sagher O, Reda D, Moy CS, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein J, Stoner G, Heemskerk J, Huang GD (2009) Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 301:63–73. https://doi.org/10.1001/jama.2008.929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, Daniels C, Deutschländer A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908. https://doi.org/10.1056/NEJMoa060281

    Article  CAS  PubMed  Google Scholar 

  6. Tripoliti E, Zrinzo L, Martinez-Torres I, Frost E, Pinto S, Foltynie T, Holl E, Petersen E, Roughton M, Hariz MI, Limousin P (2011) Effects of subthalamic stimulation on speech of consecutive patients with Parkinson disease. Neurology 76:6–80. https://doi.org/10.1212/WNL.0b013e318203e7d0

    Article  Google Scholar 

  7. Tommasi G, Krack P, Fraix V, Le Bas JF, Chabardes S, Benabid AL, Pollak P (2008) Pyramidal tract side effects induced by deep brain stimulation of the subthalamic nucleus. J Neurol Neurosurg Psychiatry 79:9–813. https://doi.org/10.1136/jnnp.2007.117507

    Article  Google Scholar 

  8. Deuschl G, Herzog J, Kleiner-Fisman G, Kubu C, Lozano AM, Lyons KE, Rodriguez-Oroz MC, Tamma F, Tröster AI, Vitek JL, Volkmann J, Voon V (2006) Deep brain stimulation: postoperative issues. Mov Disord 21(Suppl 14):S219-237. https://doi.org/10.1002/mds.20957

    Article  PubMed  Google Scholar 

  9. Törnqvist AL, Schalén L, Rehncrona S (2005) Effects of different electrical parameter settings on the intelligibility of speech in patients with Parkinson’s disease treated with subthalamic deep brain stimulation. Mov Disord 20:416–423. https://doi.org/10.1002/mds.20348

    Article  PubMed  Google Scholar 

  10. Baizabal-Carvallo JF, Jankovic J (2016) Movement disorders induced by deep brain stimulation. Parkinsonism Relat Disord 25:1–9. https://doi.org/10.1016/j.parkreldis.2016.01.014

    Article  PubMed  Google Scholar 

  11. Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 387:588–630. https://doi.org/10.1002/(sici)1096-9861(19971103)387:4%3c588::aid-cne8%3e3.0.co;2-z

    Article  CAS  PubMed  Google Scholar 

  12. Merola A, Zibetti M, Angrisano S, Rizzi L, Ricchi V, Artusi CA, Lanotte M, Rizzone MG, Lopiano L (2011) Parkinson’s disease progression at 30 years: a study of subthalamic deep brain-stimulated patients. Brain 134:74–84. https://doi.org/10.1093/brain/awr121

    Article  Google Scholar 

  13. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL, Pollak P (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349:25–34. https://doi.org/10.1056/NEJMoa035275

    Article  Google Scholar 

  14. Moro E, Esselink RJ, Xie J, Hommel M, Benabid AL, Pollak P (2002) The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 59:06–13. https://doi.org/10.1212/wnl.59.5.706

    Article  Google Scholar 

  15. Rizzone M, Lanotte M, Bergamasco B, Tavella A, Torre E, Faccani G, Melcarne A, Lopiano L (2001) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry 71:5–9. https://doi.org/10.1136/jnnp.71.2.215

    Article  Google Scholar 

  16. Timmermann L, Jain R, Chen L, Maarouf M, Barbe MT, Allert N, Brücke T, Kaiser I, Beirer S, Sejio F, Suarez E, Lozano B, Haegelen C, Vérin M, Porta M, Servello D, Gill S, Whone A, Van Dyck N, Alesch F (2015) Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson’s disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol 14:693–701. https://doi.org/10.1016/s1474-4422(15)00087-3

    Article  PubMed  Google Scholar 

  17. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  18. Andrade C (2020) Mean difference, standardized mean difference (SMD), and their use in meta-analysis: as simple as it gets. J Clin Psychiatry 81. https://doi.org/10.4088/JCP.20f13681

  19. Reich MM, Steigerwald F, Sawalhe AD, Reese R, Gunalan K, Johannes S, Nickl R, Matthies C, McIntyre CC, Volkmann J (2015) Short pulse width widens the therapeutic window of subthalamic neurostimulation. Ann Clin Transl Neurol 2:427–432. https://doi.org/10.1002/acn3.168

    Article  PubMed  PubMed Central  Google Scholar 

  20. Seger A, Gulberti A, Vettorazzi E, Braa H, Buhmann C, Gerloff C, Hamel W, Moll CKE, Pötter-Nerger M (2021) Short pulse and conventional deep brain stimulation equally improve the Parkinsonian gait disorder. J Parkinsons Dis 11:1455–1464. https://doi.org/10.3233/jpd-202492

    Article  PubMed  Google Scholar 

  21. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716. https://doi.org/10.1046/j.1445-2197.2003.02748.x

    Article  PubMed  Google Scholar 

  22. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  23. Niklas J (2019) Short pulses in neurostimulation for Parkinson's Disease. https://trialsearch.who.int/Trial2.aspx?TrialID=DRKS00017528. Accessed 26 Oct 2021

  24. Foltynie T (2018) Short pulse width DBS in Parkinson's Disease. https://physicsweb.org/articles/news/11/6/16/1. Accessed 26 Oct 2021

  25. Kimura K, Kishida H, Ueda N, Hamada K, Kawasaki T, Tanaka F (2016) The effect of short pulse width neurostimulation in GPi-DBS. Movement Disord 31:S29. https://doi.org/10.1002/mds.26688

  26. Volkmann J, Steigerwald F, Reich M, Sawalhe AD, Timmermann L, Barbe M, Kuhn AA, Hubl J, Schnitzler A, Groiss SJ et al (2016) Deep brain stimulation at short pulse width results in superior therapeutic windows for treatment of Parkinson's disease: a randomized, controlled, double-blind neurostimulation trial (CUSTOM-DBS). Stereot Funct Neuros 92:s199. https://doi.org/10.1159/000367644

  27. Dayal V, Limousin P, Foltynie T (2017) Subthalamic nucleus deep brain stimulation in Parkinson’s disease: the effect of varying stimulation parameters. J Parkinsons Dis 7:235–245. https://doi.org/10.3233/jpd-171077

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abeyesekera A, Adams S, Mancinelli C, Knowles T, Gilmore G, Delrobaei M, Jog M (2019) Effects of deep brain stimulation of the subthalamic nucleus settings on voice quality, intensity, and prosody in Parkinson’s disease: preliminary evidence for speech optimization. Can J Neurol Sci 46:287–294. https://doi.org/10.1017/cjn.2019.16

    Article  PubMed  Google Scholar 

  29. Zitman FMP, Janssen A, van der Gaag NA, Hoffmann CFE, Zutt R, Contarino MF (2021) The actual use of directional steering and shorter pulse width in selected patients undergoing deep brain stimulation. Parkinsonism Relat Disord 93:58–61. https://doi.org/10.1016/j.parkreldis.2021.11.009

    Article  PubMed  Google Scholar 

  30. Bouthour W, Wegrzyk J, Momjian S, Péron J, Fleury V, Tomkova Chaoui E, Horvath J, Boëx C, Lüscher C, Burkhard PR, Krack P, Zacharia A (2018) Short pulse width in subthalamic stimulation in Parkinson’s disease: a randomized, double-blind study. Mov Disord 33:169–173. https://doi.org/10.1002/mds.27265

    Article  PubMed  Google Scholar 

  31. Dayal V, Grover T, Limousin P, Akram H, Cappon D, Candelario J, Salazar M, Tripoliti E, Zrinzo L, Hyam J, Jahanshahi M, Hariz M, Foltynie T (2018) The effect of short pulse width settings on the therapeutic window in subthalamic nucleus deep brain stimulation for Parkinson’s disease. J Parkinsons Dis 8:273–279. https://doi.org/10.3233/jpd-171272

    Article  PubMed  Google Scholar 

  32. Dayal V, Grover T, Tripoliti E, Milabo C, Salazar M, Candelario-McKeown J, Athauda D, Zrinzo L, Akram H, Hariz M, Limousin P, Foltynie T (2020) Short versus conventional pulse-width deep brain stimulation in Parkinson’s disease: a randomized crossover comparison. Mov Disord 35:101–108. https://doi.org/10.1002/mds.27863

    Article  PubMed  Google Scholar 

  33. Fabbri M, Natale F, Artusi CA, Romagnolo A, Bozzali M, Giulietti G, Guimaraes I, Rizzone MG, Accornero A, Lopiano L, Zibetti M (2021) Deep brain stimulation fine-tuning in Parkinson’s disease: short pulse width effect on speech. Parkinsonism Relat Disord 87:130–134. https://doi.org/10.1016/j.parkreldis.2021.05.007

    Article  PubMed  Google Scholar 

  34. Steigerwald F, Timmermann L, Kühn A, Schnitzler A, Reich MM, Kirsch AD, Barbe MT, Visser-Vandewalle V, Hübl J, van Riesen C, Groiss SJ, Moldovan AS, Lin S, Carcieri S, Manola L, Volkmann J (2018) Pulse duration settings in subthalamic stimulation for Parkinson’s disease. Mov Disord 33:165–169. https://doi.org/10.1002/mds.27238

    Article  PubMed  Google Scholar 

  35. Parent B, Awan N, Berman SB, Suski V, Moore R, Crammond D, Kondziolka D (2011) The relevance of age and disease duration for intervention with subthalamic nucleus deep brain stimulation surgery in Parkinson disease. J Neurosurg 114:927–931. https://doi.org/10.3171/2010.10.Jns10756

    Article  PubMed  Google Scholar 

  36. Grover T, Georgiev D, Kalliola R, Mahlknecht P, Zacharia A, Candelario J, Hyam J, Zrinzo L, Hariz M, Foltynie T, Limousin P, Jahanshahi M, Tripoliti E (2019) Effect of low versus high frequency subthalamic deep brain stimulation on speech intelligibility and verbal fluency in Parkinson’s disease: a double-blind study. J Parkinsons Dis 9:141–151. https://doi.org/10.3233/jpd-181368

    Article  PubMed  Google Scholar 

  37. Moreau C, Defebvre L, Destée A, Bleuse S, Clement F, Blatt JL, Krystkowiak P, Devos D (2008) STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology 71:80–84. https://doi.org/10.1212/01.wnl.0000303972.16279.46

    Article  CAS  PubMed  Google Scholar 

  38. Groppa S, Herzog J, Falk D, Riedel C, Deuschl G, Volkmann J (2014) Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor. Brain 137:109–121. https://doi.org/10.1093/brain/awt304

    Article  PubMed  Google Scholar 

  39. Anderson CJ, Anderson DN, Pulst SM, Butson CR, Dorval AD (2020) Neural selectivity, efficiency, and dose equivalence in deep brain stimulation through pulse width tuning and segmented electrodes. Brain Stimul 13:1040–1050. https://doi.org/10.1016/j.brs.2020.03.017

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kogan M, McGuire M, Riley J (2019) Deep brain stimulation for Parkinson disease. Neurosurg Clin N Am 30:137–146. https://doi.org/10.1016/j.nec.2019.01.001

    Article  PubMed  Google Scholar 

  41. Dayal V, De Roquemaurel A, Grover T, Ferreira F, Salazar M, Milabo C, Candelario-McKeown J, Zrinzo L, Akram H, Limousin P, Foltynie T (2020) Novel programming features help alleviate subthalamic nucleus stimulation-induced side effects. Mov Disord 35:2261–2269. https://doi.org/10.1002/mds.28252

    Article  PubMed  Google Scholar 

  42. Brozova H, Barnaure I, Ruzicka E, Stochl J, Alterman R, Tagliati M (2021) Short- and long-term effects of DBS on gait in Parkinson’s disease. Front Neurol 12:688760. https://doi.org/10.3389/fneur.2021.688760

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zibetti M, Moro E, Krishna V, Sammartino F, Picillo M, Munhoz RP, Lozano AM, Fasano A (2016) Low-frequency subthalamic stimulation in Parkinson’s disease: long-term outcome and predictors. Brain Stimul 9:774–779. https://doi.org/10.1016/j.brs.2016.04.017

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinyong Ye, Fabin Lin or Guoen Cai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

None.

Informed consent

Not Applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xinyang Zou, Yisen Shi, and Xilin Wu have contributed equally to this work and are co-first-authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 500 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Shi, Y., Wu, X. et al. Efficacy of short pulse and conventional deep brain stimulation in Parkinson’s disease: a systematic review and meta-analysis. Neurol Sci 44, 815–825 (2023). https://doi.org/10.1007/s10072-022-06484-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06484-z

Keywords

Navigation