Skip to main content
Log in

Non-traditional lipid parameters as potential predictors of carotid plaque vulnerability and stenosis in patients with acute ischemic stroke

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

Lipid abnormalities are important risk factors in patients with large atherosclerotic strokes. Recent studies have shown that non-traditional lipid parameters are crucial to the development of atherosclerosis and are closely related to the clinical outcome of acute ischemic stroke (AIS). Therefore, we aimed to investigate the relationship between non-traditional lipid parameters and carotid plaque stability and stenosis degree in patients with large atherosclerotic stroke.

Methods

We retrospectively analyzed 336 patients with AIS. All patients were divided into the non-plaque group, stable plaque group, and vulnerable plaque group according to ultrasound examination. At the same time, the patients were divided into non-stenosis, mild stenosis, moderate stenosis, and severe stenosis groups according to the degree of stenosis. Non-traditional lipid parameters, including residual lipoprotein cholesterol (RLP-C), non-high-density lipoprotein cholesterol (non-HDL-C), non-HDL-C to high-density lipoprotein cholesterol ratio (non-HDL-C/HDL-C), triglyceride to HDL-C ratio (TG/HDL-C), Castelli’s risk index (CRI), and the atherogenic index of plasma (AIP). Receiver operating characteristic (ROC) curves and multivariate logistic regression analyses were used to investigate the associations between the non-traditional lipid parameters and carotid plaque vulnerability. Spearman linear correlation analysis was used to test the correlation between variables and the degree of carotid plaque stenosis.

Results

This study population included 336 patients with AIS, of whom 294 had a carotid plaque. Multivariate logistic regression model showed that RLP-C (OR, 3.361; 95%CI, 1.311–8.617), non-HDL-C/HDL-C (OR, 1.699; 95%CI, 1.279–2.258), non-HDL-C (OR, 1.704; 95%CI, 1.143–2.540), CRI-I (OR, 1.573; 95%CI, 1.196–2.068), and CRI-II (OR, 2.022; 95%CI, 1.369–2.985) were independent risk factors for carotid plaque vulnerability. In addition, Spearman correlation analysis showed that the values of RLP-C, non-HDL-C/HDL-C, non-HDL-C, TG/HDL-C, CRI-I, CRI-II, and AIP on admission were positively correlated with the degree of carotid plaque stenosis (all P < 0.001).

Conclusion

This study provides evidence that non-traditional lipid parameters (LP-C, non-HDL-C/HDL-C, non-HDL-C, CRI-I, and CRI-II) were potential predictors of carotid plaque vulnerability in patients with AIS. However, no significant correlation was observed between TG/HDL-C and AIP. RLP-C, non-HDL-C/HDL-C, non-HDL-C, TG/HDL-C, CRI-I, CRI-II, and AIP were closely related to the degree of carotid plaque stenosis. Non-traditional lipid parameters can be used as novel biomarkers of carotid plaque vulnerability and stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Graph 1
Graph 2
Graph 3
Graph 4

Similar content being viewed by others

References

  1. Diseases GBD, Injuries C (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. [J].Lancet 396(10258):1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9

    Article  Google Scholar 

  2. Freilinger T, Dimitriadis K, Nikolaou K et al (2011) Stroke while squeezing a pimple: traumatic rupture of a vulnerable carotid artery plaque. [J].Neurology 76(3):305–6. https://doi.org/10.1212/WNL.0b013e3182074be8

    Article  CAS  Google Scholar 

  3. Puig N, Jiménez-Xarrié E, Camps-Renom P et al (2020) Search for reliable circulating biomarkers to predict carotid plaque vulnerability. [J] Int J Mol Sci 21(21):8236. https://doi.org/10.3390/ijms21218236

  4. van DamNolen DHK, van Dijk AC, Crombag G et al (2021) Lipoprotein(a) levels and atherosclerotic plaque characteristics in the carotid artery: the plaque at RISK (PARISK) study. [J].Atherosclerosis 329:22–29. https://doi.org/10.1016/j.atherosclerosis.2021.06.004

    Article  CAS  Google Scholar 

  5. Anderson TJ, Grégoire J, Pearson GJ et al (2016) 2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. [J].Can J Cardiol 32(11):1263–1282. https://doi.org/10.1016/j.cjca.2016.07.510

    Article  PubMed  Google Scholar 

  6. Mach F, Baigent C, Catapano AL et al (2020) 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. [J].Eur Heart J 41(1):111–188. https://doi.org/10.1093/eurheartj/ehz455s

    Article  PubMed  Google Scholar 

  7. Hu W, Wei R, Wang L et al (2018) Correlations of MMP-1, MMP-3, and MMP-12 with the degree of atherosclerosis, plaque stability and cardiovascular and cerebrovascular events. [J].Exp Ther Med 15(2):1994–1998. https://doi.org/10.3892/etm.2017.5623

    Article  CAS  Google Scholar 

  8. Chin J, Mori TA, Adams LA et al (2020) Association between remnant lipoprotein cholesterol levels and non-alcoholic fatty liver disease in adolescents. [J].JHEP Reports 2(6):100150. https://doi.org/10.1016/j.jhepr.2020.100150

    Article  PubMed Central  Google Scholar 

  9. Guo J, Wang A, Wang Y et al (2021) Non-traditional lipid parameters as potential predictors of asymptomatic intracranial arterial stenosis. [J].Front Neurol 12:679415. https://doi.org/10.3389/fneur.2021.679415

    Article  PubMed Central  Google Scholar 

  10. Grant EG, Benson CB, Moneta GL et al (2003) Carotid artery stenosis: gray-scale and Doppler US diagnosis–Society of Radiologists in Ultrasound Consensus Conference. [J].Radiology 229(2):340–6. https://doi.org/10.1148/radiol.2292030516

    Article  Google Scholar 

  11. Hartley A, Haskard D, Khamis R (2019) Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis - novel insights and future directions in diagnosis and therapy. [J].Trend Cardio Med 29(1):22–26. https://doi.org/10.1016/j.tcm.2018.05.010

    Article  CAS  Google Scholar 

  12. Amarenco P, Hobeanu C, Labreuche J et al (2020) Carotid atherosclerosis evolution when targeting a low-density lipoprotein cholesterol concentration <70 mg/dL After an ischemic stroke of atherosclerotic origin. [J].Circulation 142(8):748–757. https://doi.org/10.1161/circulationaha.120.046774

    Article  CAS  PubMed  Google Scholar 

  13. Hou Q, Li S, Gao Y et al (2018) Relations of lipid parameters, other variables with carotid intima-media thickness and plaque in the general Chinese adults: an observational study. [J].Lipids Health Dis 17(1):107. https://doi.org/10.1186/s12944-018-0758-9

    Article  Google Scholar 

  14. Ma C, Gurol ME, Huang Z et al (2019) Low-density lipoprotein cholesterol and risk of intracerebral hemorrhage: a prospective study. [J].Neurology 93(5):e445–e457. https://doi.org/10.1212/wnl.0000000000007853

    Article  CAS  PubMed Central  Google Scholar 

  15. Tang M, Zhao Q, Yi K et al (2022) Association between four nontraditional lipids and ischemic stroke: a cohort study in Shanghai, China. [J].Lipids Health Dis 21(1):72. https://doi.org/10.1186/s12944-022-01683-1

    Article  CAS  Google Scholar 

  16. Yang Z, Ming XF (2006) Recent advances in understanding endothelial dysfunction in atherosclerosis. [J].Cli Med Res 4(1):53–65. https://doi.org/10.3121/cmr.4.1.53

    Article  Google Scholar 

  17. Langsted A, Madsen CM, Nordestgaard BG (2020) Contribution of remnant cholesterol to cardiovascular risk. [J].J Intern Med 288(1):116–127. https://doi.org/10.1111/joim.13059

    Article  CAS  PubMed  Google Scholar 

  18. Liu L, Wen T, Zheng XY et al (2009) Remnant-like particles accelerate endothelial progenitor cells senescence and induce cellular dysfunction via an oxidative mechanism. [J].Atherosclerosis 202(2):405–14. https://doi.org/10.1016/j.atherosclerosis.2008.05.024

    Article  CAS  Google Scholar 

  19. Kim JY, Park JH, Jeong SW et al (2011) High levels of remnant lipoprotein cholesterol is a risk factor for large artery atherosclerotic stroke. [J]J Clinical Neurol 7(4):203–9. https://doi.org/10.3988/jcn.2011.7.4.203

    Article  Google Scholar 

  20. Qian S, You S, Sun Y et al (2021) Remnant cholesterol and common carotid artery intima-media thickness in patients with ischemic stroke. [J].Circ Cardiovasc Imaging 14(4):e010953. https://doi.org/10.1161/circimaging.120.010953

    Article  Google Scholar 

  21. Plakogiannis R, Saseen JJ, Stefanidis A (2021) Pharmacists’ utilization of non-HDL-C levels in managing patients with lipid disorders. [J].Hosp Pharma 56(4):378–383. https://doi.org/10.1177/0018578720910380

    Article  Google Scholar 

  22. Saito I, Yamagishi K, Kokubo Y et al (2020) Non-high-density lipoprotein cholesterol and risk of stroke subtypes and coronary heart disease: the Japan public health center-based prospective (JPHC) study. [J].J Atheroscler Thromb 27(4):363–374. https://doi.org/10.5551/jat.50385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Imamura T, Doi Y, Ninomiya T et al (2014) Non-high-density lipoprotein cholesterol and the development of coronary heart disease and stroke subtypes in a general Japanese population: the Hisayama Study. [J].Atherosclerosis 233(2):343–348. https://doi.org/10.1016/j.atherosclerosis.2014.01.005

    Article  CAS  Google Scholar 

  24. Iannuzzi A, Giallauria F, Gentile M et al. (2021) Association between non-HDL-C/HDL-C ratio and carotid intima-media thickness in post-menopausal women. [J]. J Clin Med 11(1):78. https://doi.org/10.3390/jcm11010078

  25. Liu H, Liu K, Pei L et al (2021) Atherogenic index of plasma predicts outcomes in acute ischemic stroke. [J].Frontiers in neurology 12:741754. https://doi.org/10.3389/fneur.2021.741754

    Article  PubMed Central  Google Scholar 

  26. Khosravi A, Sadeghi M, Farsani ES et al (2022) Atherogenic index of plasma: a valuable novel index to distinguish patients with unstable atherogenic plaques. [J].J Res Med Sci 27:45. https://doi.org/10.4103/jrms.jrms_590_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cai G, Shi G, Xue S et al (2017) The atherogenic index of plasma is a strong and independent predictor for coronary artery disease in the Chinese Han population. [J].Medicine 96(37):e8058. https://doi.org/10.1097/md.0000000000008058

    Article  PubMed Central  Google Scholar 

  28. Onat A, Can G, Kaya H et al (2010) “Atherogenic index of plasma” (log10 triglyceride/high-density lipoprotein-cholesterol) predicts high blood pressure, diabetes, and vascular events. [J].J Clin Lipid 4(2):89–98. https://doi.org/10.1016/j.jacl.2010.02.005

    Article  Google Scholar 

  29. Wang C, Du Z, Ye N et al (2020) Using the atherogenic index of plasma to estimate the prevalence of ischemic stroke within a general population in a rural area of China. [J].Biomed Res Int 2020:7197054. https://doi.org/10.1155/2020/7197054

    Article  Google Scholar 

  30. Garg R, Knox N, Prasad S et al (2020) The atherogenic index of plasma is independently associated with symptomatic carotid artery stenosis. [J].J Stroke Cerebrovasc Dis 29(12):105351. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105351

    Article  PubMed  PubMed Central  Google Scholar 

  31. Deng QW, Li S, Wang H et al (2018) The short-term prognostic value of the triglyceride-to-high-density lipoprotein cholesterol ratio in acute ischemic stroke. [J].Aging Dis 9(3):498–506. https://doi.org/10.14336/ad.2017.0629

    Article  Google Scholar 

  32. Zhou L, Mai J, Li Y et al (2020) Triglyceride to high-density lipoprotein cholesterol ratio and risk of atherosclerotic cardiovascular disease in a Chinese population. [J].Nutr Metab Cardiovasc Dis 30(10):1706–1713. https://doi.org/10.1016/j.numecd.2020.05.009

    Article  CAS  Google Scholar 

  33. Johnston N, Jernberg T, Lagerqvist B et al (2006) Improved identification of patients with coronary artery disease by the use of new lipid and lipoprotein biomarkers. [J].Am J Card 97(5):640–5. https://doi.org/10.1016/j.amjcard.2005.09.123

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Tuomilehto J, Jousilahti P et al (2012) Total and high-density lipoprotein cholesterol and stroke risk. [J].Stroke 43(7):1768–74. https://doi.org/10.1161/strokeaha.111.646778

    Article  Google Scholar 

  35. Sujatha R, Kavitha S (2017) Atherogenic indices in stroke patients: a retrospective study. [J].Iran J Neurol 16(2):78–82 (PMID: 28761629)

    PubMed  PubMed Central  Google Scholar 

  36. Fujihara K, Suzuki H, Sato A et al (2013) Carotid artery plaque and LDL-to-HDL cholesterol ratio predict atherosclerotic status in coronary arteries in asymptomatic patients with type 2 diabetes mellitus. [J].J Atheroscler Thromb 20(5):452–64. https://doi.org/10.5551/jat.14977

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the enrolled patients and their families, paramedics, and all staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Wang, H., Hou, Q. et al. Non-traditional lipid parameters as potential predictors of carotid plaque vulnerability and stenosis in patients with acute ischemic stroke. Neurol Sci 44, 835–843 (2023). https://doi.org/10.1007/s10072-022-06472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06472-3

Keywords

Navigation