Skip to main content

Advertisement

Log in

The hypothalamus may mediate migraine and ictal photophobia: evidence from Granger causality analysis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

The hypothalamus plays a central role in the pathophysiology of migraine and is considered to be the “migraine generator.” It participates in initiating a migraine attack through its connectivity to regions of the brain involved in processing and modulating pain. However, the underlying mechanisms of hypothalamic effective functional connectivity that bring about migraines remain unclear. This study investigated the hypothalamus-based directional effective connectivity in migraine without aura patients and assessed associations among the clinical characteristics.

Methods

Seven patients with migraine without aura during the attack (MWoA-DA) (four with photophobia (MWoA-DAWP) and three without photophobia (MWoA-DAWoP)), twenty-seven patients with migraine without aura during the interictal period (MWoA-DI), and twenty-nine healthy controls (HC) were included in this study. Granger causality analysis (GCA) was used to investigate the directional effective connectivity between the hypothalamus and other brain regions.

Results

MWoA-DA patients exhibited decreased outflow from the bilateral hypothalamus to the visual cortex compared with the MWoA-DI patients and HCs. The MWoA-DAWP group primarily contributed to this result. The MWoA-DA patients showed decreased outflow from the bilateral hypothalamus to the right inferior parietal gyrus compared with the HCs. The visual analogue scale (VAS) was negatively correlated with abnormal effective functional connectivity from the right hypothalamus to the right inferior parietal gyrus in the MWoA-DA group.

Conclusions

These data provide evidence that the hypothalamus might serve as a central component of a multisystem network implicated in migraine and ictal photophobia, which includes hypothalamus and the visual and trigeminovascular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MWoA-DA:

Migraine without aura during the attack

MWoA-DI:

Migraine without aura during the interictal period

MWoA-DAWP:

Migraine without aura patients during attack with photophobia

MWoA-DAWoP:

Migraine without aura patients during attack without photophobia

HC:

Healthy controls

GCA:

Granger causality analysis

FC:

Functional connectivity

VAS:

Visual analogue scale

MIDAS:

Migraine Disability Assessment Scale

HIT-6:

Headache Impact Test

SF-MPQ-2:

Short-form McGill Pain Questionnaire-2 scores

CSD:

Cortical spreading depression

HP:

Hypothalamus

IPG:

Inferior parietal gyrus

References

  1. Headache Classification Committee of the International Headache S (2013) The International Classification of Headache Disorders, 3rd edition (beta version). 33(9):629–808

  2. Global Burden of Disease Study C (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(9995):743–800

    Article  Google Scholar 

  3. Charles ACSM (2013) Baca, Cortical spreading depression and migraine. Nat Rev Neurol 9(11):637–644

    Article  PubMed  Google Scholar 

  4. Edvinsson L, Haanes KA, Warfvinge K (2019) Does inflammation have a role in migraine? Nat Rev Neurol 15(8):483–490

    Article  PubMed  Google Scholar 

  5. Akerman S, Holland R, Goadsby J (2011) Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci 12(10):570–584

    Article  CAS  PubMed  Google Scholar 

  6. Maniyar FH et al (2014) Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 137(Pt 1):232–241

    Article  PubMed  Google Scholar 

  7. Schulte LHA (2016) May, The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 139(Pt 7):1987–1993

    Article  PubMed  Google Scholar 

  8. Schulte LH, Mehnert J, May A (2020) Longitudinal neuroimaging over 30 days: temporal characteristics of migraine. Ann Neurol 87(4):646–651

    Article  PubMed  Google Scholar 

  9. Denuelle M et al (2007) Hypothalamic activation in spontaneous migraine attacks. Headache 47(10):1418–1426

    PubMed  Google Scholar 

  10. Meylakh N et al (2020) Altered regional cerebral blood flow and hypothalamic connectivity immediately prior to a migraine headache. Cephalalgia 40(5):448–460

    Article  PubMed  Google Scholar 

  11. Lerebours F et al (2019) Functional connectivity of hypothalamus in chronic migraine with medication overuse. Cephalalgia 39(7):892–899

    Article  PubMed  Google Scholar 

  12. Schulte LH, Allers A, May A (2017) Hypothalamus as a mediator of chronic migraine: Evidence from high-resolution fMRI. Neurology 88(21):2011–2016

    Article  PubMed  Google Scholar 

  13. Buchel CK (2000) Friston, Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw 13(8–9):871–882

    Article  CAS  PubMed  Google Scholar 

  14. Moulton EA et al (2014) Altered hypothalamic functional connectivity with autonomic circuits and the locus coeruleus in migraine. PLoS ONE 9(4):e95508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Schulte LH et al (2020) The migraineur’s brain networks: continuous resting state fMRI over 30 days. Cephalalgia 40(14):1614–1621

    Article  PubMed  Google Scholar 

  16. Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25(1):230–242

    Article  PubMed  Google Scholar 

  17. Deshpande GX (2012) Hu, Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis. Brain Connect 2(5):235–245

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang X et al (2021) Altered amygdala effective connectivity in migraine without aura: evidence from resting-state fMRI with Granger causality analysis. J Headache Pain 22(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang T et al (2016) Altered resting-state ascending/descending pathways associated with the posterior thalamus in migraine without aura. NeuroReport 27(4):257–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhu Y et al (2021) Alterations in Effective Connectivity of the Hippocampus in Migraine without Aura. J Pain Res 14:3333–3343

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yan CG et al (2016) DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 14(3):339–351

    Article  PubMed  Google Scholar 

  22. Cao Z et al (2022) Decreased gray matter volume in the frontal cortex of migraine patients with associated functional connectivity alterations: a VBM and rs-FC study. Pain Res Manag 2022:2115956

    Article  PubMed  PubMed Central  Google Scholar 

  23. Messina R et al (2021) Clinical correlates of hypothalamic functional changes in migraine patients. Cephalalgia :3331024211046618

  24. Zang ZX et al (2012) Granger causality analysis implementation on MATLAB: a graphic user interface toolkit for fMRI data processing. J Neurosci Methods 203(2):418–426

    Article  PubMed  Google Scholar 

  25. M A, S D et al (2017) Exploring connectivity with large-scale Granger causality on resting-state functional MRI. J Neurosci Methods 287:68–79

    Article  Google Scholar 

  26. Puledda F et al (2019) Imaging the visual network in the migraine spectrum. Front Neurol 10:1325

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jin C et al (2013) Structural and functional abnormalities in migraine patients without aura. NMR Biomed 26(1):58–64

    Article  PubMed  Google Scholar 

  28. Wang JJ et al (2016) Amplitude of low-frequency fluctuation (ALFF) and fractional ALFF in migraine patients: a resting-state functional MRI study. Clin Radiol 71(6):558–564

    Article  PubMed  Google Scholar 

  29. Wei HL et al (2021) Functional connectivity of the visual cortex differentiates anxiety comorbidity from episodic migraineurs without aura. J Headache Pain 22(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang L et al (2021) Altered metabolites in the occipital lobe in migraine without aura during the attack and the interictal period. Front Neurol 12:656349

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thiebaut de Schotten M et al (2014) Subdivision of the occipital lobes: an anatomical and functional MRI connectivity study. Cortex 56:121–37

    Article  PubMed  Google Scholar 

  32. May AR (2019) Burstein, Hypothalamic regulation of headache and migraine. Cephalalgia 39(13):1710–1719

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zielman R et al (2017) Cortical glutamate in migraine. Brain 140(7):1859–1871

    Article  PubMed  Google Scholar 

  34. Kamali A et al (2020) A direct visuosensory cortical connectivity of the human limbic system. Dissecting the trajectory of the parieto-occipito-hypothalamic tract in the human brain using diffusion weighted tractography. Neurosci Lett 728:134955

    Article  CAS  PubMed  Google Scholar 

  35. Coppola G et al (2020) Increased neural connectivity between the hypothalamus and cortical resting-state functional networks in chronic migraine. J Neurol 267(1):185–191

    Article  PubMed  Google Scholar 

  36. Wei HL et al (2019) Impaired intrinsic functional connectivity between the thalamus and visual cortex in migraine without aura. J Headache Pain 20(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  37. Messina R et al (2018) Gray matter volume modifications in migraine: a cross-sectional and longitudinal study. Neurology 91(3):e280–e292

    Article  PubMed  Google Scholar 

  38. Boulloche N et al (2010) Photophobia in migraine: an interictal PET study of cortical hyperexcitability and its modulation by pain. J Neurol Neurosurg Psychiatry 81(9):978–984

    Article  PubMed  Google Scholar 

  39. Denuelle M et al (2011) A PET study of photophobia during spontaneous migraine attacks. Neurology 76(3):213–218

    Article  CAS  PubMed  Google Scholar 

  40. Rossi HL, Recober A (2015) Photophobia in primary headaches. Headache 55(4):600–604

    Article  PubMed  PubMed Central  Google Scholar 

  41. Munjal S et al (2020) Most bothersome symptom in persons with migraine: results from the migraine in America Symptoms and Treatment (MAST) study. Headache 60(2):416–429

    Article  PubMed  Google Scholar 

  42. Schulte LHK (2019) Peng, Current understanding of premonitory networks in migraine: A window to attack generation. Cephalalgia 39(13):1720–1727

    Article  PubMed  Google Scholar 

  43. Wilkins AJ et al (2021) Photophobia in migraine: a symptom cluster? Cephalalgia 41(11–12):1240–1248

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mulleners WM et al (2001) Visual cortex excitability in migraine with and without aura. Headache 41(6):565–572

    Article  CAS  PubMed  Google Scholar 

  45. Brighina F et al (2015) Visual cortex hyperexcitability in migraine in response to sound-induced flash illusions. Neurology 84(20):2057–2061

    Article  PubMed  Google Scholar 

  46. Noseda R et al (2017) Neural mechanism for hypothalamic-mediated autonomic responses to light during migraine. Proc Natl Acad Sci U S A 114(28):E5683–E5692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Artemenko AR et al (2022) Migraine and light: a narrative review. Headache 62(1):4–10

    Article  PubMed  Google Scholar 

  48. Noseda R, Copenhagen D, Burstein R (2019) Current understanding of photophobia, visual networks and headaches. Cephalalgia 39(13):1623–1634

    Article  PubMed  Google Scholar 

  49. Hayne DR (2019) Martin, Relating photophobia, visual aura, and visual triggers of headache and migraine. Headache 59(3):430–442

    Article  PubMed  Google Scholar 

  50. Vincent MBN (2007) Hadjikhani, Migraine aura and related phenomena: beyond scotomata and scintillations. Cephalalgia 27(12):1368–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vincent MB (2015) Vision and migraine. Headache 55(4):595–599

    Article  PubMed  Google Scholar 

  52. Hadjikhani NM (2019) Vincent, Neuroimaging clues of migraine aura. J Headache Pain 20(1):32

    Article  PubMed  PubMed Central  Google Scholar 

  53. Corno S et al (2018) The brain effect of the migraine attack: an ASL MRI study of the cerebral perfusion during a migraine attack. Neurol Sci 39(Suppl 1):73–74

    Article  PubMed  Google Scholar 

  54. Qin ZX et al (2020) Altered resting-state functional connectivity between subregions in the thalamus and cortex in migraine without aura. Eur J Neurol 27(11):2233–2241

    Article  CAS  PubMed  Google Scholar 

  55. Wei HL et al (2020) Impaired functional connectivity of limbic system in migraine without aura. Brain Imaging Behav 14(5):1805–1814

    Article  PubMed  Google Scholar 

  56. Tian Z et al (2021) Acupuncture modulation effect on pain processing patterns in patients with migraine without aura. Front Neurosci 15:729218

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yu ZB et al (2016) Different mean thickness implicates involvement of the cortex in migraine. Medicine (Baltimore) 95(37):e4824

    Article  Google Scholar 

  58. Coppola G et al (2015) Evidence for brain morphometric changes during the migraine cycle: a magnetic resonance-based morphometry study. Cephalalgia 35(9):783–791

    Article  PubMed  Google Scholar 

  59. Liu J et al (2012) Hierarchical alteration of brain structural and functional networks in female migraine sufferers. PLoS ONE 7(12):e51250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen N et al (2015) Functional alterations of pain processing pathway in migraine patients with cutaneous allodynia. Pain Med 16(6):1211–1220

    Article  PubMed  Google Scholar 

  61. Hu B et al (2019) Multi-modal MRI reveals the neurovascular coupling dysfunction in chronic migraine. Neuroscience 419:72–82

    Article  CAS  PubMed  Google Scholar 

  62. Schwedt TJCD (2014) Chong, Correlations between brain cortical thickness and cutaneous pain thresholds are atypical in adults with migraine. PLoS ONE 9(6):e99791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the volunteers for their involvement in the study.

Funding

This study was supported by Science and Technology Planning Project of Traditional Chinese Medicine of Zhejiang Province (grant number 2021ZB101) and Medical and Health Research Project of Zhejiang Province (grant number 2020KY665).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Cao or Zhengxiang Zhang.

Ethics declarations

Statement of ethics

The study was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) and was approved by the Ethics Committee of the first Affiliated Hospital of Zhejiang Chinese Medical University.

Conflict of interest

The authors declare no competing interests.

Ethical approval and Informed consent

The study was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) and was approved by the Ethics Committee of the first Affiliated Hospital of Zhejiang Chinese Medical University (2018-KL-081-02).

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1861 KB)

Supplementary file2 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yu, W., Xu, M. et al. The hypothalamus may mediate migraine and ictal photophobia: evidence from Granger causality analysis. Neurol Sci 43, 6021–6030 (2022). https://doi.org/10.1007/s10072-022-06245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06245-y

Keywords

Navigation