Skip to main content

Advertisement

Log in

Global and local shape features of the hippocampus based on Laplace–Beltrami eigenvalues and eigenfunctions: a potential application in the lateralization of temporal lobe epilepsy

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Using magnetic resonance (MR) images to evaluate changes in the shape of the hippocampus has been an active research topic. This paper presents a new shape analysis approach to quantify and visualize deformations of the hippocampus in epilepsy. The proposed method is based on Laplace–Beltrami (LB) eigenvalues and eigenfunctions as isometric invariant shape features, and thus, the procedure does not require any image registration. In addition to the LB-based shape features, total hippocampal volume and surface area are calculated using manually segmented images. Theses shape and volumetric descriptors are used to distinguish the patients with temporal lobe epilepsy (TLE) (N = 55) from healthy control subjects (N = 12, age = 32.2 ± 9.1, sex (M/F) = 6/6) and patients with right TLE (N = 26, age = 45.1 ± 11.0, sex (M/F) = 9/17) from left TLE (N = 29, age = 45.4 ± 11.9, sex (M/F) = 10/19). Experimental results illustrate the usefulness of the proposed approach for the diagnosis and lateralization of TLE with 93.0% and 86.4% of the cases, respectively. Moreover, the proposed method outperforms the volumetric analysis in terms of both sensitivity (94.9% vs. 88.1%) and specificity (83.3% vs. 50.0%) of the lateralization. The analysis of local hippocampal thickness variations suggests significant deformation in both ipsilateral and contralateral hippocampi of epileptic patients, while there were no differences between right and left hippocampi in controls. It is anticipated that the proposed method could be advantageous in the presurgical evaluation of patients with drug-resistant epilepsy; however, further validation of the method using a larger dataset is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Connor S, Ng V, McDonald C, Schulze K, Morgan K, Dazzan P, Murray RM (2004) A study of hippocampal shape anomaly in schizophrenia and in families multiply affected by schizophrenia or bipolar disorder. Neuroradiology 46:523–534

    Article  CAS  Google Scholar 

  2. Dam AM (1980) Epilepsy and neuron loss in the hippocampus. Epilepsia 21:617–629

    Article  CAS  Google Scholar 

  3. Berkovic SF, Andermann F, Olivier A, Ethier R, Melanson D, Robitaille Y, Kuzniecky R, Peters T, Feindel W (1991) Hippocampal sclerosis in temporal lobe epilepsy demonstrated by magnetic resonance imaging. Ann Neurol 29:175–182

    Article  CAS  Google Scholar 

  4. Anstey K, Maller J (2003) The role of volumetric MRI in understanding mild cognitive impairment and similar classifications. Aging Ment Health 7:238–250

    Article  CAS  Google Scholar 

  5. Jber M, Jaar Mehvari Habibabadi J, Sharifpour R, Marzbani H, Hassanpour M, Seyfi M, Mohammadi Mobarakeh N, Keihani A, Hashemi-Fesharaki SS, Ay M, Nazem-Zadeh MR (2021) Temporal and extratemporal atrophic manifestation of temporal lobe epilepsy using voxel-based morphometry and corticometry: clinical application in lateralization of epileptogenic zone. Neurol Sci 42(8):3305–3325

  6. Ng B, Toews M, Durrleman S, Shi Y (2014) Shape analysis for brain structures. In: Li S, Tavares JMRS (eds) Shape analysis in medical image analysis. Springer International Publishing, pp 3–49

    Chapter  Google Scholar 

  7. Levitt J, Westin C, Nestor P, Estepar SJ, R., Dickey, C., Voglmaier, M., Seidman, L., Kikinis, R., Jolesz, F., McCarley, R., Shenton, M., (2004) Shape of the caudate nucleus and its cognitive correlates in neuroleptic-naive schizotypal personality disorder. Biol Psychiat 55:177–184

    Article  Google Scholar 

  8. Sommer I, Müller O, Domingues FS, Sander O, Weickert J, Lengauer T (2007) Moment invariants as shape recognition technique for comparing protein binding sites. Bioinformatics 23:3139–3146

    Article  CAS  Google Scholar 

  9. Esmaeilzadeh M, Soltanian-Zadeh H, Jafari-Khouzani K (2012) Mesial temporal lobe epilepsy lateralization using SPHARM-based features of hippocampus and SVM, Medical Imaging 2012: Image Processing, Proc. of SPIE 8314, 83144H-1 to 83144H-10. https://doi.org/10.1117/12.911740

  10. Gerig G, Styner M, Jones D, Weinberger D, Lieberman J (2001) Shape analysis of brain ventricles using SPHARM, Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA'01). https://doi.org/10.1109/MMBIA.2001.991731

  11. Styner M, Oguz I, Xu S, Brechbühler C, Pantazis D, Levitt JJ, Shenton ME, Gerig G (2006) Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J (1071):242–250

  12. Canales-Rodríguez EJ, Radua J, Pomarol-Clotet E, Sarró S, Alemán-Gómez Y, Iturria-Medina Y, Salvador R (2013) Statistical analysis of brain tissue images in the wavelet domain: wavelet-based morphometry. Neuroimage 72:214–226

    Article  Google Scholar 

  13. Schröder P, Sweldens W (1995) Spherical wavelets: efficiently representing functions on the sphere, Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, pp. 161–172

  14. Bouix S, Pruessner JC, Louis Collins D, Siddiqi K (2005) Hippocampal shape analysis using medial surfaces. Neuroimage 25:1077–1089

    Article  Google Scholar 

  15. Styner M, Lieberman J, Gerig G (2003) Boundary and medial shape analysis of the hippocampus in schizophrenia. In: Ellis R, Peters T (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. Springer, Berlin Heidelberg, pp 464–471

    Chapter  Google Scholar 

  16. Thompson PM, Hayashi KM, de Zubicaray GI, Janke AL, Rose SE, Semple J, Hong MS, Herman DH, Gravano D, Doddrell DM (2004) Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage 22:1754–1766

    Article  Google Scholar 

  17. Haller JW, Banerjee A, Christensen GE, Gado M, Joshi S, Miller MI, Sheline Y, Vannier MW, Csernansky JG (1997) Three-dimensional hippocampal MR morphometry with high-dimensional transformation of a neuroanatomic atlas. Radiology 202:504–510

    Article  CAS  Google Scholar 

  18. Das SR, Mechanic-Hamilton D, Korczykowski M, Pluta J, Glynn S, Avants BB, Detre JA, Yushkevich PA (2009) Structure specific analysis of the hippocampus in temporal lobe epilepsy. Hippocampus 19:517–525

    Article  Google Scholar 

  19. Hogan RE, Bucholz RD, Joshi S (2003) Hippocampal deformation-based shape analysis in epilepsy and unilateral mesial temporal sclerosis. Epilepsia 44:800–806

    Article  Google Scholar 

  20. Hogan RE, Wang L, Bertrand ME, Willmore LJ, Bucholz RD, Nassif AS, Csernansky JG (2004) MRI-based high-dimensional hippocampal mapping in mesial temporal lobe epilepsy. Brain 127:1731–1740

    Article  Google Scholar 

  21. Kim H, Mansi T, Bernasconi A, Bernasconi N (2011) Vertex-wise shape analysis of the hippocampus: disentangling positional differences from volume changes. Med Image Comput Comput Assist Interv 2011;14(Pt 2):352–359. https://doi.org/10.1007/978-3-642-23629-7_43

  22. Kodipaka S, Vemuri BC, Rangarajan A, Leonard CM, Schmallfuss I, Eisenschenk S (2007) Kernel fisher discriminant for shape-based classification in epilepsy. Med Image Anal 11:79–90

    Article  CAS  Google Scholar 

  23. Hogan R, Wang L, Bertrand M, Willmore L, Bucholz R, Nassif A, Csernansky J (2006) Predictive value of hippocampal MR imaging-based high-dimensional mapping in mesial temporal epilepsy: preliminary findings. Am J Neuroradiol 27:2149–2154

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Reuter M (2010) Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions. Int J Comput Vision 89:287–308

    Article  Google Scholar 

  25. Reuter M, Wolter F-E, Peinecke N (2006) Laplace-Beltrami spectra as ‘Shape-DNA’of surfaces and solids. Comput Aided Des 38:342–366

    Article  Google Scholar 

  26. Reuter M, Wolter F-E, Shenton M, Niethammer M (2009) Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Comput Aided Des 41:739–755

    Article  Google Scholar 

  27. Rabiei H, Richard F, Coulon O, Lefèvre J (2019) Estimating the complexity of the cerebral cortex folding with a local shape spectral analysis. Springer, Vertex-Frequency Analysis of Graph Signals

    Book  Google Scholar 

  28. Shishegar R, Manton JH, Walker DW, Britto JM, Johnston LA (2015) Quantifying gyrification using Laplace Beltrami eigenfunction level-sets. In: Proceedings of the 12th IEEE International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 1272–1275. https://doi.org/10.1109/ISBI.2015.7164106

  29. Shishegar R, Pizzagalli F, Georgiou-Karistianis N, Egan GF, Jahanshad N, Johnston LA (2021) A gyrification analysis approach based on Laplace Beltrami eigenfunction level sets. Neuroimage 229:117751

    Article  Google Scholar 

  30. Lyu I, Kim SH, Woodward ND, Styner MA, Landman BA (2017) TRACE: a topological graph representation for automatic sulcal curve extraction. IEEE Trans Med Imaging 37:1653–1663

    Article  Google Scholar 

  31. Shishegar R, Tolcos M, Walker DW, Johnston LA (2016) Sulcal curve extraction using Laplace Beltrami eigenfunction level sets. In: Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 4043–4046

  32. Hu J, Hamidian H, Zhong Z, Hua J (2017) Visualizing shape deformations with variation of geometric spectrum. IEEE Trans Vis Comput Graph 23(1):721–730

    Article  Google Scholar 

  33. Shishegar R, Soltanian-Zadeh H, Moghadasi SR (2011) Hippocampal shape analysis in epilepsy using Laplace-Beltrami spectrum, Electrical Engineering (ICEE), 2011 19th Iranian Conference on. IEEE, pp. 1–5

  34. Shishegar R, Soltanian-Zadeh H, Tehranipour F (2012) Statistical shape analysis of hippocampus in temporal lobe epilepsy based on Laplace-Beltrami eigenfunction levelsets, Artificial Intelligence and Signal Processing (AISP), 2012 16th CSI International Symposium on. IEEE, pp. 364–369

  35. Duvernoy HM (2005) The human hippocampus: functional anatomy, vascularization and serial sections with MRI. Springer Verlag

    Book  Google Scholar 

  36. Jafari-Khouzani K, Elisevich KV, Patel S, Soltanian-Zadeh H (2011) Dataset of magnetic resonance images of nonepileptic subjects and temporal lobe epilepsy patients for validation of hippocampal segmentation techniques. Neuroinformatics 9:335–346

    Article  Google Scholar 

  37. Biasotti S, De Floriani L, Falcidieno B, Frosini P, Giorgi D, Landi C, Papaleo L, Spagnuolo M (2008) Describing shapes by geometrical-topological properties of real functions. ACM Computing Surveys (CSUR) 40:12

    Article  Google Scholar 

  38. Good P (2005) Permutation, parametric and bootstrap tests of hypotheses. Springer

    Google Scholar 

  39. Balasko B, Abonyi J, Feil B (2005) Fuzzy clustering and data analysis toolbox. University of Veszprem, Veszprem, Department of Process Engineering

    Google Scholar 

  40. Edelsbrunner H, Harer J, Zomorodian A (2003) Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discret Comput Geom 30:87–107

    Article  Google Scholar 

  41. Frangi AF, Rueckert D, Schnabel JA, Niessen WJ (2002) Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. Medical Imaging, IEEE Transactions on 21:1151–1166

    Article  Google Scholar 

  42. Halkidi M, Batistakis Y, Vazirgiannis M (2002) Clustering validity checking methods: part II. ACM SIGMOD Rec 31:19–27

    Article  Google Scholar 

  43. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841

    Article  Google Scholar 

  44. Kanungo T, Mount D (2004) An efficient k-means clustering algorithm: analysis and implantation. IEEE Trans, PAMI 24:881–892

    Article  Google Scholar 

  45. Moghaddam HS, Aarabi MH, Mehvari-Habibabadi J, Sharifpour R, Mohajer B, Mohammadi-Mobarakeh N, Hashemi-Fesharaki SS, Elisevich K, Nazem-Zadeh MR (2021) Distinct patterns of hippocampal subfield volume loss in left and right mesial temporal lobe epilepsy. Neurol Sci 42(4):1411–1421. https://doi.org/10.1007/s10072-020-04653-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Martin Reuter for his software “shapeDNA.” The authors would also like to thank Dr. Kourosh Jafari-Khouzani for segmenting hippocampus from magnetic resonance images. The authors also thank Dr. Seyed Reza Moghadasi for assisting in the LB operator’s theories.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad-Reza Nazem-Zadeh or Hamid Soltanian-Zadeh.

Ethics declarations

Ethical approval

None.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 321 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishegar, R., Gandomkar, Z., Fallahi, A. et al. Global and local shape features of the hippocampus based on Laplace–Beltrami eigenvalues and eigenfunctions: a potential application in the lateralization of temporal lobe epilepsy. Neurol Sci 43, 5543–5552 (2022). https://doi.org/10.1007/s10072-022-06204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06204-7

Keywords

Navigation