Skip to main content

Advertisement

Log in

Space neuroscience: current understanding and future research

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Space exploration is crucial for understanding our surroundings and establishing scientific concepts to explore, monitor, and save our planet’s environment. However, the response of the human nervous system in the environment of space poses numerous challenges. Brain complexity explains the vulnerability and intrinsic difficulty of recalibration after disturbance. Over the millennia, the brain has evolved to function at 1-G. Studying the brain and its physiology in different environments may shed light on multiple conditions encountered on Earth that are yet to be solved and dictate collaboration at international levels. The nervous system is affected by several stressors due to microgravity, radiation, isolation, disruption of circadian rhythm, impaired sleep dynamics, and hypercapnia associated with space travel. In this article, we aim to review several aspects related to the nervous system in weightless conditions, as well as the development and future of the emerging field of “space neuroscience.” Space neuroscience is a fascinating, embryonic field that requires significant development. The establishment of frameworks for the strategic development of space neuroscience is vital, as more research and collaboration are required to overcome these numerous and diverse challenges, minimize risks, and optimize crew performance during planetary operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ruyters G, Stang K (2016) Space medicine 2025 – a vision: space medicine driving terrestrial medicine for the benefit of people on Earth. REACH 1:55–62

    Article  Google Scholar 

  2. Hughes-Fulford M (2011) To infinity ... and beyond! Human spaceflight and life science. FASEB J 25(9):2858–2864

    Article  CAS  Google Scholar 

  3. Shirah BH, Ahmed MM (2021) Patents in space medicine: an immediate call for innovations in the field. REACH 23–24:100045

    Article  Google Scholar 

  4. Grenon SM, Saary J, Gray G, Vanderploeg JM, Hughes-Fulford M (2012) Can I take a space flight? Considerations for doctors. BMJ 345:e8124

    Article  Google Scholar 

  5. Ghidini T (2018) Regenerative medicine and 3D bioprinting for human space exploration and planet colonisation. J Thorac Dis 10(Suppl 20):S2363–S2375

    Article  Google Scholar 

  6. Koppelmans V, Bloomberg JJ, Mulavara AP, Seidler RD (2016) Brain structural plasticity with spaceflight. npj Microgravity 2(1):2

    Article  Google Scholar 

  7. Clément G, Reschke MF (2008) Space neuroscience: what is it? In: Clément G, Reschke MF (eds) Neuroscience in Space. Springer New York, New York, NY, pp 1–32

    Chapter  Google Scholar 

  8. Clément G (2017) International roadmap for artificial gravity research. npj Microgravity 3(1):29

    Article  Google Scholar 

  9. Clément GR, Boyle RD, George KA et al (2020) Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 123(5):2037–2063

    Article  Google Scholar 

  10. Roy-O’Reilly M, Mulavara A, Williams T (2021) A review of alterations to the brain during spaceflight and the potential relevance to crew in long-duration space exploration. npj Microgravity 7(1):1–9

    Article  Google Scholar 

  11. Shinojima A, Kakeya I, Tada S (2018) Association of space flight with problems of the brain and eyes. JAMA Ophthalmol 136(9):1075

    Article  Google Scholar 

  12. Zhang LF, Hargens AR (2018) Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Physiol Rev 98(1):59–87

    Article  Google Scholar 

  13. Taibbi G, Cromwell RL, Kapoor KG, Godley BF, Vizzeri G (2013) The effect of microgravity on ocular structures and visual function: a review. Surv Ophthalmol 58(2):155–163

    Article  Google Scholar 

  14. Lee AG, Tarver WJ, Mader TH, Gibson CR, Hart SF, Otto CA (2016) Neuro-ophthalmology of space flight. J Neuro-Ophthalmol 36(1):85–91

    Article  Google Scholar 

  15. Lee AG, Mader TH, Gibson CR et al (2020) Spaceflight associated neuro-ocular syndrome (Sans) and the neuro-ophthalmologic effects of microgravity: a review and an update. npj Microgravity 6(1):7

    Article  Google Scholar 

  16. Kramer LA, Hasan KM, Stenger MB et al (2020) Intracranial effects of microgravity: a prospective longitudinal mri study. Radiology 295(3):640–648

    Article  Google Scholar 

  17. Van Ombergen A, Jillings S, Jeurissen B et al (2018) Brain tissue–volume changes in cosmonauts. N Engl J Med 379(17):1678–1680

    Article  Google Scholar 

  18. Li K, Guo X, Jin Z et al (2015) Effect of simulated microgravity on human brain gray matter and white matter--evidence from mri. PLoS ONE 10(8):e0135835

    Article  Google Scholar 

  19. Hupfeld KE, McGregor HR, Koppelmans V et al (2022) Brain and behavioral evidence for reweighting of vestibular inputs with long-duration spaceflight. Cereb Cortex 32(4):755–769

    Article  CAS  Google Scholar 

  20. Carriot J, Mackrous I, Cullen KE (2021) Challenges to the vestibular system in space: how the brain responds and adapts to microgravity. Front Neural Circuits 15:760313

    Article  Google Scholar 

  21. Garrett-Bakelman FE, Darshi M, Green SJ et al (2019) The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364(6436):eaau8650

    Article  CAS  Google Scholar 

  22. Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88(2):557–579

    Article  CAS  Google Scholar 

  23. Stone RC, Horvath K, Kark JD, Susser E, Tishkoff SA, Aviv A (2016) Telomere length and the cancer-atherosclerosis trade-off. PLoS Genet 12(7):e1006144

    Article  Google Scholar 

  24. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  Google Scholar 

  25. Luxton JJ, McKenna MJ, Taylor LE et al (2020) Temporal telomere and DNA damage responses in the space radiation environment. Cell Rep 33(10):108435

    Article  CAS  Google Scholar 

  26. Norsk P (2020) Adaptation of the cardiovascular system to weightlessness: surprises, paradoxes and implications for deep space missions. Acta Physiol 228(3):e13434

    Article  CAS  Google Scholar 

  27. Cox JF, Tahvanainen KUO, Kuusela TA et al (2002) Influence of microgravity on astronauts’ sympathetic and vagal responses to Valsalva’s manoeuvre. J Physiol 538(Pt 1):309–320

    Article  CAS  Google Scholar 

  28. De la Torre GG (2014) Cognitive neuroscience in space. Life (Basel). 4(3):281–294

    PubMed  PubMed Central  Google Scholar 

  29. Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A (2017) The impact of stress on body function: a review. EXCLI J 16:1057–1072

    PubMed  PubMed Central  Google Scholar 

  30. Acharya MM, Baulch JE, Klein PM et al (2019) New concerns for neurocognitive function during deep space exposures to chronic, low dose-rate, neutron radiation. eNeuro 6(4) ENEURO 0094-19.2019

  31. Goel N, Bale TL, Epperson CN et al (2014) Effects of sex and gender on adaptation to space: behavioral health. J Womens Health (Larchmt) 23(11):975–986

    Article  Google Scholar 

  32. Badran BW, Caulfield KA, Cox C et al (2020) Brain stimulation in zero gravity: transcranial magnetic stimulation (Tms) motor threshold decreases during zero gravity induced by parabolic flight. npj Microgravity 6(1):1–7

    Article  Google Scholar 

  33. Larson MD, Behrends M (2015) Portable infrared pupillometry: a review. Anesth Analg 120(6):1242–1253

    Article  Google Scholar 

  34. Hall CA, Chilcott RP (2018) Eyeing up the future of the pupillary light reflex in neurodiagnostics. Diagnostics (Basel) 8(1)

  35. Lussier BL, Olson DM, Aiyagari V (2019) Automated pupillometry in neurocritical care: research and practice. Curr Neurol Neurosci Rep 19(10):71

    Article  Google Scholar 

  36. Wang KK, Yang Z, Zhu T et al (2018) An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 18(2):165–180

    Article  Google Scholar 

  37. Mao XW, Nishiyama NC, Pecaut MJ et al (2016) Simulated microgravity and low-dose/low-dose-rate radiation induces oxidative damage in the mouse brain. Radiat Res 185(6):647–657

    Article  CAS  Google Scholar 

  38. Iosim S, MacKay M, Westover C, Mason CE (2019) Translating current biomedical therapies for long duration, deep space missions. Precis Clin Med 2(4):259–269

    Article  Google Scholar 

  39. Löbrich M, Jeggo PA (2019) Hazards of human spaceflight. Science 364(6436):127–128

    Article  Google Scholar 

  40. Watenpaugh DE (2016) Analogs of microgravity: head-down tilt and water immersion. J Appl Physiol (1985) 120(8):904–914

    Article  Google Scholar 

Download references

Funding

This work was supported by Nebula Research & Development (A Limited Liability Company, Saudi Arabia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bader H. Shirah.

Ethics declarations

Conflict of interest

None.

Ethical approval

None.

Informed consent

Not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirah, B.H., Ibrahim, B.M., Aladdin, Y. et al. Space neuroscience: current understanding and future research. Neurol Sci 43, 4649–4654 (2022). https://doi.org/10.1007/s10072-022-06146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06146-0

Keywords

Navigation