Skip to main content

Advertisement

Log in

Medications on hypertension, hyperlipidemia, diabetes, and risk of amyotrophic lateral sclerosis: a systematic review and meta-analysis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

To investigate the association between the use of common medications on hypertension, hyperlipidemia, diabetes, and the risk of amyotrophic lateral sclerosis (ALS).

Methods

PubMed, EMBASE, OVID, and Web of Science were searched systematically until December 2021 for studies quantitatively investigating the effect of medications on hypertension, hyperlipidemia, and diabetes on the risk of ALS. We conducted a fixed-effects model or random-effects meta-analysis to calculate the summary ORs (odds ratios) and 95%CIs (confidence intervals).

Results

Regular intake of angiotensin-converting enzyme inhibitors (ACEIs) (OR: 0.81, 95%CI: 0.74, 0.89), beta-blockers (OR: 0.82, 95%CI: 0.76, 0.90), calcium-channel blockers (CCBs) (OR: 0.85, 95%CI: 0.79, 0.93), or diuretics (OR: 0.87, 95%CI: 0.81, 0.93) was inversely associated with the incidence of ALS. There was no significant association between statin use and risk of ALS (OR: 0.92, 95%CI: 0.83, 1.03). Metformin (OR: 0.83, 95%CI: 0.75, 0.93) and sulfonylureas (OR: 0.79, 95%CI:0.71, 0.89) use could significantly reduce the risk of ALS.

Conclusion

Regular use of anti-hypertensive drugs and anti-diabetes including ACEIs, beta-blockers, CCBs, diuretics, metformin, and sulfonylureas could protect against the incidence of ALS. No significant association between anti-hyperlipidemia drug use and risk of ALS was revealed. Regular medications for hypertension, hyperlipidemia, and diabetes should be recommended regardless of the diagnosis of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data analyzed during this study are included in published articles.

References

  1. Kiernan MC et al (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955

    Article  CAS  PubMed  Google Scholar 

  2. Visser J et al (2007) Disease course and prognostic factors of progressive muscular atrophy. Arch Neurol 64(4):522–528

    Article  PubMed  Google Scholar 

  3. Knibb JA et al (2016) A clinical tool for predicting survival in ALS. J Neurol Neurosurg Psychiatry 87(12):1361–1367

    Article  PubMed  Google Scholar 

  4. Longinetti E, Fang F (2019) Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol 32(5):771–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosa Silva JP et al (2020) Quality of life and functional independence in amyotrophic lateral sclerosis: a systematic review. Neurosci Biobehav Rev 111:1–11

    Article  PubMed  Google Scholar 

  6. De Marchi F et al (2019) Depression and risk of cognitive dysfunctions in amyotrophic lateral sclerosis. Acta Neurol Scand 139(5):438–445

    Article  PubMed  Google Scholar 

  7. McElhiney MC et al (2009) Prevalence of fatigue and depression in ALS patients and change over time. J Neurol Neurosurg Psychiatry 80(10):1146–1149

    Article  CAS  PubMed  Google Scholar 

  8. Rabkin JG et al (2015) Depression and wish to die in a multicenter cohort of ALS patients. Amyotroph Lateral Scler Frontotemporal Degener 16(3–4):265–273

    Article  PubMed  Google Scholar 

  9. Thakore NJ, Lapin BR, Pioro EP (2020) Stage-specific riluzole effect in amyotrophic lateral sclerosis: a retrospective study. Amyotroph Lateral Scler Frontotemporal Degener 21(1–2):140–143

    Article  CAS  PubMed  Google Scholar 

  10. (2017) Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 16(7): 505–512

  11. Miller RG, Mitchell JD, Moore DH (2012) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 2012(3):Cd001447

    PubMed Central  Google Scholar 

  12. Moglia C et al (2017) Influence of arterial hypertension, type 2 diabetes and cardiovascular risk factors on ALS outcome: a population-based study. Amyotroph Lateral Scler Frontotemporal Degener 18(7–8):590–597

    Article  PubMed  Google Scholar 

  13. Kioumourtzoglou MA et al (2015) Diabetes mellitus, obesity, and diagnosis of amyotrophic lateral sclerosis: a population-based study. JAMA Neurol 72(8):905–911

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moreau C et al (2012) Modifying effect of arterial hypertension on amyotrophic lateral sclerosis. Amyotroph Lateral Scler 13(2):194–201

    Article  PubMed  Google Scholar 

  15. Mandrioli J et al (2018) Cardiovascular diseases may play a negative role in the prognosis of amyotrophic lateral sclerosis. Eur J Neurol 25(6):861–868

    Article  CAS  PubMed  Google Scholar 

  16. Lian L et al (2019) Environmental risk factors and amyotrophic lateral sclerosis (ALS): a case-control study of ALS in China. J Clin Neurosci 66:12–18

    Article  PubMed  Google Scholar 

  17. Freedman DM et al (2018) Relationship of statins and other cholesterol-lowering medications and risk of amyotrophic lateral sclerosis in the US elderly. Amyotroph Lateral Scler Frontotemporal Degener 19(7–8):538–546

    Article  CAS  PubMed  Google Scholar 

  18. Seelen M et al (2014) Prior medical conditions and the risk of amyotrophic lateral sclerosis. J Neurol 261(10):1949–1956

    Article  CAS  PubMed  Google Scholar 

  19. Cardoso S et al (2009) Insulin is a two-edged knife on the brain. J Alzheimers Dis 18(3):483–507

    Article  CAS  PubMed  Google Scholar 

  20. Sun H et al (2013) Therapeutic potential of N-acetyl-glucagon-like peptide-1 in primary motor neuron cultures derived from non-transgenic and SOD1-G93A ALS mice. Cell Mol Neurobiol 33(3):347–357

    Article  CAS  PubMed  Google Scholar 

  21. Pfeiffer RM et al (2020) Identifying potential targets for prevention and treatment of amyotrophic lateral sclerosis based on a screen of medicare prescription drugs. Amyotroph Lateral Scler Frontotemporal Degener 21(3–4):235–245

    Article  CAS  PubMed  Google Scholar 

  22. Stroup DF et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–12

    Article  CAS  PubMed  Google Scholar 

  23. Liberati A et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700

    Article  PubMed  PubMed Central  Google Scholar 

  24. Skajaa N et al (2021) Statin initiation and risk of amyotrophic lateral sclerosis: a Danish population-based cohort study. Epidemiology

  25. Mariosa D et al (2020) Antidiabetics, statins and the risk of amyotrophic lateral sclerosis. Eur J Neurol 27(6):1010–1016

    Article  CAS  PubMed  Google Scholar 

  26. Torrandell-Haro G et al (2020) Statin therapy and risk of Alzheimer’s and age-related neurodegenerative diseases. Alzheimers Dement (N Y) 6(1):e12108

    Google Scholar 

  27. Schumacher J et al (2020) Statins, diabetes mellitus and prognosis of amyotrophic lateral sclerosis: data from 501 patients of a population-based registry in southwest Germany. Eur J Neurol 27(8):1405–1414

    Article  CAS  PubMed  Google Scholar 

  28. Diekmann K et al (2020) Impact of comorbidities and co-medication on disease onset and progression in a large German ALS patient group. J Neurol 267(7):2130–2141

    Article  PubMed  Google Scholar 

  29. Bond L et al (2020) Associations of Patient Mood, Modulators of Quality of Life, and Pharmaceuticals with Amyotrophic Lateral Sclerosis Survival Duration. Behav Sci (Basel) 10(1)

  30. Franchi C et al (2016) Angiotensin-converting enzyme inhibitors and motor neuron disease: an unconfirmed association. Amyotroph Lateral Scler Frontotemporal Degener 17(5–6):385–388

    Article  CAS  PubMed  Google Scholar 

  31. Lin FC et al (2015) Angiotensin-converting enzyme inhibitors and amyotrophic lateral sclerosis risk: a total population-based case-control study. JAMA Neurol 72(1):40–48

    Article  PubMed  Google Scholar 

  32. Qureshi M et al (2008) Medications and laboratory parameters as prognostic factors in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 9(6):369–374

    Article  CAS  PubMed  Google Scholar 

  33. Linden D, Diehl RR, Berlit P (1998) Reduced baroreflex sensitivity and cardiorespiratory transfer in amyotrophic lateral sclerosis. Electroencephalogr Clin Neurophysiol 109(5):387–390

    Article  CAS  PubMed  Google Scholar 

  34. Scelsa SN, Khan I (2000) Blood pressure elevations in riluzole-treated patients with amyotrophic lateral sclerosis. Eur Neurol 43(4):224–227

    Article  CAS  PubMed  Google Scholar 

  35. Armon C et al (1991) Antecedent medical diseases in patients with amyotrophic lateral sclerosis. A population-based case-controlled study in Rochester, Minn, 1925 through 1987. Arch Neurol 48(3):283–6

    Article  CAS  PubMed  Google Scholar 

  36. Pereira M et al (2021) Cardiovascular comorbidities in amyotrophic lateral sclerosis. J Neurol Sci 421:117292

    Article  PubMed  Google Scholar 

  37. Kehoe PG, Wilcock GK (2007) Is inhibition of the renin-angiotensin system a new treatment option for Alzheimer’s disease? Lancet Neurol 6(4):373–378

    Article  CAS  PubMed  Google Scholar 

  38. Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10(3):253–263

    Article  CAS  PubMed  Google Scholar 

  39. Ravati A et al (1999) Enalapril and moexipril protect from free radical-induced neuronal damage in vitro and reduce ischemic brain injury in mice and rats. Eur J Pharmacol 373(1):21–33

    Article  CAS  PubMed  Google Scholar 

  40. Mira ML et al (1993) Angiotensin converting enzyme inhibitors as oxygen free radical scavengers. Free Radic Res Commun 19(3):173–181

    Article  CAS  PubMed  Google Scholar 

  41. Sengul G et al (2011) Neuroprotective effect of ACE inhibitors in glutamate - induced neurotoxicity: rat neuron culture study. Turk Neurosurg 21(3):367–371

    PubMed  Google Scholar 

  42. Wang H et al (2011) Vitamin E intake and risk of amyotrophic lateral sclerosis: a pooled analysis of data from 5 prospective cohort studies. Am J Epidemiol 173(6):595–602

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ohrui T et al (2004) Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology 63(7):1324–1325

    Article  CAS  PubMed  Google Scholar 

  44. Reardon KA et al (2000) The angiotensin converting enzyme (ACE) inhibitor, perindopril, modifies the clinical features of Parkinson’s disease. Aust N Z J Med 30(1):48–53

    Article  CAS  PubMed  Google Scholar 

  45. Lin SY et al (2020) Effects of β-adrenergic blockade on metabolic and inflammatory responses in a rat model of ischemic stroke. Cells 9(6)

  46. Leal SS, Gomes CM (2015) Calcium dysregulation links ALS defective proteins and motor neuron selective vulnerability. Front Cell Neurosci 9:225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Miller RG et al (1996) Controlled trial of nimodipine in amyotrophic lateral sclerosis. Neuromuscul Disord 6(2):101–104

    Article  CAS  PubMed  Google Scholar 

  48. Miller RG et al (1996) A clinical trial of verapamil in amyotrophic lateral sclerosis. Muscle Nerve 19(4):511–515

    Article  CAS  PubMed  Google Scholar 

  49. Dorst J et al (2011) Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. J Neurol 258(4):613–617

    Article  CAS  PubMed  Google Scholar 

  50. Dupuis L et al (2008) Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70(13):1004–1009

    Article  CAS  PubMed  Google Scholar 

  51. Huang R et al (2015) The serum lipid profiles of amyotrophic lateral sclerosis patients: a study from south-west China and a meta-analysis. Amyotroph Lateral Scler Frontotemporal Degener 16(5–6):359–365

    Article  PubMed  CAS  Google Scholar 

  52. Bandres-Ciga S et al (2019) Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Ann Neurol 85(4):470–481

    Article  PubMed  PubMed Central  Google Scholar 

  53. Beltowski J (2010) Statins and ALS: the possible role of impaired LXR signaling. Med Sci Monit 16(3):Ra73-78

    CAS  PubMed  Google Scholar 

  54. Edwards IR, Star K, Kiuru A (2007) Statins, neuromuscular degenerative disease and an amyotrophic lateral sclerosis-like syndrome: an analysis of individual case safety reports from vigibase. Drug Saf 30(6):515–525

    Article  PubMed  Google Scholar 

  55. Wannarong T, Ungprasert P (2020) Diabetes mellitus is associated with a lower risk of amyotrophic lateral sclerosis: a systematic review and meta-analysis. Clin Neurol Neurosurg 199:106248

    Article  PubMed  Google Scholar 

  56. Vasta R et al (2021) The links between diabetes mellitus and amyotrophic lateral sclerosis. Neurol Sci 42(4):1377–1387

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang L et al (2022) Association between type 2 diabetes and amyotrophic lateral sclerosis. Sci Rep 12(1):2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zu T et al (2020) Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. Proc Natl Acad Sci U S A 117(31):18591–18599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Han J et al (2018) Metformin suppresses retinal angiogenesis and inflammation in vitro and in vivo. PLoS ONE 13(3):e0193031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Mariosa D et al (2015) Association between diabetes and amyotrophic lateral sclerosis in Sweden. Eur J Neurol 22(11):1436–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Araki K et al (2019) TDP-43 regulates early-phase insulin secretion via CaV1.2-mediated exocytosis in islets. J Clin Invest 129(9):3578–3593

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the authors of the original articles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Hu.

Ethics declarations

Ethical approval and consent to participate

Ethical approval and consent to participate were not necessary for this systematic review.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, N., Ji, H. Medications on hypertension, hyperlipidemia, diabetes, and risk of amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurol Sci 43, 5189–5199 (2022). https://doi.org/10.1007/s10072-022-06131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06131-7

Keywords

Navigation