Skip to main content

Advertisement

Log in

Single nucleotide variants around the connective tissue growth factor (CTGF/CCN2) gene and their association with multiple sclerosis risk, disability scores, and rate of disease progression

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

This study aimed to explore the possible association of single nucleotide polymorphisms (SNPs) in the upstream (rs9402373) and downstream regions (rs9399005 and rs12526196) of the gene encoding connective tissue growth factor (CTGF/CCN2) with relapsing–remitting multiple sclerosis (RRMS) risk and clinical parameters including disability scores and rate of disability progression.

Materials and methods

In total, 200 patients with RRMS and 305 controls were genotyped using real-time PCR (rs1252696 C/T and rs9402373 G/C) or PCR–RFLP (rs9399005 C/T) methods. Furthermore, the association between these genotypes and clinical parameters including Expanded Disability Status Scale (EDSS) score, Multiple Sclerosis Severity Score (MSSS), age at onset, duration of disease, duration of treatment, and presence of contrast-enhancing lesions was analyzed.

Results

rs9399005 genotypes TT and CT in the dominant model were significant predictors of RRMS vs. control status by logistic regression analysis (OR = 1.45, 95% CI = 1.01–2.08, P = .04). Moreover, these genotypes for rs9399005 were associated with a MSSS ≥ 2.4 (OR = 3.54, 95% CI = 1.56–8.05, P = .003). In addition, MSSS was lower in patients who had at least one rs12526196C allele than in the corresponding patients with the TT genotype (P = .02).

Conclusion

To our knowledge, this is the first evidence of the involvement of variants around the CTGF gene in MS risk and disability progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Loma I, Heyman R (2011) Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol 9(3):409–416. https://doi.org/10.2174/157015911796557911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang WJ, Chen WW, Zhang X (2017) Multiple sclerosis: pathology, diagnosis and treatments. Exp Ther Med 13(6):3163–3166. https://doi.org/10.3892/etm.2017.4410 (Epub 2017 Apr 28 PMID: 28588671)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nourbakhsh B, Mowry EM (2019) Multiple sclerosis risk factors and pathogenesis. Continuum (Minneap Minn) 25(3):596–610. https://doi.org/10.1212/CON.0000000000000725

    Article  Google Scholar 

  4. van Rensburg SJ, van Toorn R, Erasmus RT, Hattingh C, Johannes C, Moremi KE, Kemp MC, Engel-Hills P, Kotze MJ (2021) Pathology-supported genetic testing as a method for disability prevention in multiple sclerosis (MS). Part I. Targeting a metabolic model rather than autoimmunity. Metab Brain Dis. 36(6):1151–1167. https://doi.org/10.1007/s11011-021-00711-w.

  5. Paradis V, Dargere D, Vidaud M, De Gouville AC, Huet S, Martinez V, Gauthier JM, Ba N, Sobesky R, Ratziu V, Bedossa P (1999) Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology 30(4):968–976. https://doi.org/10.1002/hep.510300425

    Article  CAS  PubMed  Google Scholar 

  6. Lasky JA, Ortiz LA, Tonthat B, Hoyle GW, Corti M, Athas G, Lungarella G, Brody A, Friedman M (1998) Connective tissue growth factor mRNA expression is upregulated in bleomycin-induced lung fibrosis. Am J Physiol 275(2):L365–L371. https://doi.org/10.1152/ajplung.1998.275.2.L365

    Article  CAS  PubMed  Google Scholar 

  7. Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, Goldschmeding R (1998) Expression of connective tissue growth factor in human renal fibrosis. Kidney Int 53(4):853–861. https://doi.org/10.1111/j.1523-1755.1998.00820.x

    Article  CAS  PubMed  Google Scholar 

  8. Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Grotendorst GR, Takehara K (1995) Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from patients with systemic sclerosis. J Invest Dermatol 105(2):280–284. https://doi.org/10.1111/1523-1747.ep12318465

    Article  CAS  PubMed  Google Scholar 

  9. Cui QL, Kuhlmann T, Miron VE, Leong SY, Fang J, Gris P, Kennedy TE, Almazan G, Antel J (2013) Oligodendrocyte progenitor cell susceptibility to injury in multiple sclerosis. Am J Pathol 183(2):516–525. https://doi.org/10.1016/j.ajpath.2013.04.016

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez D, Brandan E (2019) CTGF/CCN2 from skeletal muscle to nervous system: ımpact on neurodegenerative diseases. Mol Neurobiol 56(8):5911–5916. https://doi.org/10.1007/s12035-019-1490-9

    Article  CAS  PubMed  Google Scholar 

  11. Ercan E, Han JM, Di Nardo A, Winden K, Han MJ, Hoyo L, Saffari A, Leask A, Geschwind DH, Sahin M (2017) Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. J Exp Med 214(3):681–697. https://doi.org/10.1084/jem.20160446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stritt C, Stern S, Harting K, Manke T, Sinske D, Schwarz H, Vingron M, Nordheim A, Knöll B (2009) Paracrine control of oligodendrocyte differentiation by SRF-directed neuronal gene expression. Nat Neurosci 12(4):418–427. https://doi.org/10.1038/nn.2280

    Article  CAS  PubMed  Google Scholar 

  13. Lamond R, Barnett SC (2013) Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor. J Neurosci 33(47):18686–18697. https://doi.org/10.1523/JNEUROSCI.3233-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dessein A, Chevillard C, Arnaud V, Hou X, Hamdoun AA, Dessein H, He H, Abdelmaboud SA, Luo X, Li J, Varoquaux A, Mergani A, Abdelwahed M, Zhou J, Monis A, Pitta MG, Gasmelseed N, Cabantous S, Zhao Y, Prata A, Brandt C, Elwali NE, Argiro L, Li Y (2009) Variants of CTGF are associated with hepatic fibrosis in Chinese, Sudanese, and Brazilians infected with schistosomes. J Exp Med 206(11):2321–2328. https://doi.org/10.1084/jem.20090383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Granel B, Argiro L, Hachulla E, Fajardy I, Weiller PJ, Durand JM, Frances Y, Dombey AM, Marquet S, Lesavre N, Disdier P, Bernard F, Hatron PY, Chevillard C (2010) Association between a CTGF gene polymorphism and systemic sclerosis in a French population. J Rheumatol 37(2):351–358. https://doi.org/10.3899/jrheum.090290

    Article  CAS  PubMed  Google Scholar 

  16. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintoré M, Traboulsee AL, Trojano M, Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

    Article  PubMed  Google Scholar 

  17. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11):1444–1452. https://doi.org/10.1212/wnl.33.11.1444

    Article  CAS  PubMed  Google Scholar 

  18. Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, Achiti I, Confavreux C, Coustans M, le Page E, Edan G, McDonnell GV, Hawkins S, Trojano M, Liguori M, Cocco E, Marrosu MG, Tesser F, Leone MA, Weber A, Zipp F, Miterski B, Epplen JT, Oturai A, Sørensen PS, Celius EG, Lara NT, Montalban X, Villoslada P, Silva AM, Marta M, Leite I, Dubois B, Rubio J, Butzkueven H, Kilpatrick T, Mycko MP, Selmaj KW, Rio ME, Sá M, Salemi G, Savettieri G, Hillert J, Compston DA (2005) Multiple Sclerosis Severity Score: using disability and disease duration to rate disease severity. Neurology 64(7):1144–1151. https://doi.org/10.1212/01.WNL.0000156155.19270.F8

    Article  CAS  PubMed  Google Scholar 

  19. Can Demirdöğen B, KoçanAkçin C, Özge G, Mumcuoğlu T (2019) Evaluation of tear and aqueous humor level, and genetic variants of connective tissue growth factor as biomarkers for early detection of pseudoexfoliation syndrome/glaucoma. Exp Eye Res 189:107837. https://doi.org/10.1016/j.exer.2019.107837

    Article  CAS  PubMed  Google Scholar 

  20. SNPStats: your web tool for SNP analysis. Available from: https://www.snpstats.net/start.htm. Accessed 2 Dec 2020

  21. International Multiple Sclerosis Genetics Consortium (2019). Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 365(6460):eaav7188. https://doi.org/10.1126/science.aav7188

  22. LDlink | An ınteractive web tool for exploring linkage disequilibrium in population groups. Available from: https://ldlink.nci.nih.gov/?tab=ldpop. Accessed 22 Nov 2021

  23. Home | GAS power calculator. Available from: http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/ Accessed 02 Dec 2020

  24. Lioudyno V, Abdurasulova I, Negoreeva I, Stoliarov I, Kudriavtsev I, Serebryakova M, Klimenko V, Lioudyno M (2021) A common genetic variant rs2821557 in KCNA3 is linked to the severity of multiple sclerosis. J Neurosci Res 99(1):200–208. https://doi.org/10.1002/jnr.24596

    Article  CAS  PubMed  Google Scholar 

  25. George MF, Briggs FB, Shao X, Gianfrancesco MA, Kockum I, Harbo HF, Celius EG, Bos SD, Hedström A, Shen L, Bernstein A, Alfredsson L, Hillert J, Olsson T, Patsopoulos NA, De Jager PL, Oturai AB, Søndergaard HB, Sellebjerg F, Sorensen PS, Gomez R, Caillier SJ, Cree BA, Oksenberg JR, Hauser SL, D’Alfonso S, Leone MA, MartinelliBoneschi F, Sorosina M, van der Mei I, Taylor BV, Zhou Y, Schaefer C, Barcellos LF (2016) Multiple sclerosis risk loci and disease severity in 7,125 individuals from 10 studies. Neurol Genet 2(4):e87. https://doi.org/10.1212/NXG.0000000000000087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sandi D, Fricska-Nagy Z, Bencsik K, Vécsei L (2021) Neurodegeneration in multiple sclerosis: symptoms of silent progression, biomarkers and neuroprotective therapy-kynurenines are ımportant players. Molecules 26(11):3423. https://doi.org/10.3390/molecules26113423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dendooven A, Nguyen TQ, Brosens L, Li D, Tarnow L, Parving HH, Rossing P, Goldschmeding R (2011) The CTGF -945GC polymorphism is not associated with plasma CTGF and does not predict nephropathy or outcome in type 1 diabetes. J Negat Results Biomed 10:4. https://doi.org/10.1186/1477-5751-10-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Burke JP, O’Connell RM, Lennon G, Doherty GA, Keegan D, O’Donoghue D, Mulcahy H, Hyland J, Winter DC, Sheahan K, O’Connell PR (2013) The influence of CTGF single-nucleotide polymorphisms on outcomes in Crohn’s disease. Ann Surg 258(5):767–774. https://doi.org/10.1097/SLA.0000000000000247

    Article  PubMed  Google Scholar 

  29. Ahmad A, Askari S, Befekadu R, Hahn-Strömberg V (2015). Investigating the association between polymorphisms in connective tissue growth factor and susceptibility to colon carcinoma. Mol. Med. Rep 11(4). https://doi.org/10.3892/mmr.2014.3083

  30. Suh W, Won HH, Kee C (2015) The association of single nucleotide polymorphisms in the connective tissue growth factor gene with pseudoexfoliation syndrome/glaucoma. Acta Ophthalmol 93(8):e682–e683. https://doi.org/10.1111/aos.12719

    Article  PubMed  Google Scholar 

  31. https://www.ncbi.nlm.nih.gov/snp/. Accessed 22 Nov 2021

  32. Luchetti S, van Eden CG, Schuurman K, van Strien ME, Swaab DF, Huitinga I (2014) Gender differences in multiple sclerosis: induction of estrogen signaling in male and progesterone signaling in female lesions. J Neuropathol Exp Neurol 73(2):123–135. https://doi.org/10.1097/NEN.0000000000000037

    Article  CAS  PubMed  Google Scholar 

  33. Ziller N, Kotolloshi R, Esmaeili M, Liebisch M, Mrowka R, Baniahmad A, Liehr T, Wolf G, Loeffler I (2020) Sex differences in diabetes- and TGF-β1-ınduced renal damage. Cells 9(10):2236. https://doi.org/10.3390/cells9102236

    Article  CAS  PubMed Central  Google Scholar 

  34. Sintzel MB, Rametta M, Reder AT (2018) Vitamin D and multiple sclerosis: a comprehensive review. Neurol Ther 7(1):59–85. https://doi.org/10.1007/s40120-017-0086-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the subjects for their participation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birsen Can Demirdöğen.

Ethics declarations

Ethical approval

This study protocol was approved by the Ethical Committee of Ankara City Hospital.

Consent to participate

All subjects gave written informed consent.

Conflict of interest

The authors declare no competing interests.

Significance

This study reveals the first evidence of the involvement of single nucleotide polymorphisms around the connective tissue growth factor (CTGF) gene in relapsing–remitting multiple sclerosis (RRMS) risk and disability progression. The downstream variant rs9399005 was associated with RRMS and a higher rate of disability progression reflected by a higher Multiple Sclerosis Severity Score (MSSS). Furthermore, MSSS was significantly lower in patients with at least one rs12526196C allele than in the corresponding patients with the wild-type genotype. These data indicate a role for the variants in the region flanking CTGF gene in RRMS risk and disability progression.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Supplementary file2 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can Demirdöğen, B., Kılıç, O.O., Karagülle, E.N. et al. Single nucleotide variants around the connective tissue growth factor (CTGF/CCN2) gene and their association with multiple sclerosis risk, disability scores, and rate of disease progression. Neurol Sci 43, 3867–3877 (2022). https://doi.org/10.1007/s10072-021-05852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05852-5

Keywords

Navigation