Skip to main content

Advertisement

Log in

Renin, antidiuretic hormone (ADH), and ADH receptor levels in cerebral salt wasting associated with tuberculous meningitis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

To evaluate serum antidiuretic hormone (ADH), its receptors, and renin levels in cerebral salt wasting (CSW) in tuberculous meningitis (TBM).

Methods

Patients diagnosed with definite (n = 30) or probable TBM (n = 47) who developed hyponatremia (CSW, SIADH, or miscellaneous causes) were included. Sequential measurement of serum ADH, ADH-R, and renin activity by enzyme-linked immunosorbent assay was done and correlated with serum sodium level, urinary output, and fluid balance.

Results

Out of 79 TBM patients, CSW was observed in 36, SIADH in four, and miscellaneous hyponatremia in eight patients. CSW patients had a longer hospital stay (P < 0.001), lower GCS score (P < 0.007), higher MRC grade (P < 0.007), and a lower serum Na (P < 0.001) compared to non-CSW TBM patients. In severe CSW patients, serum ADH and ADH-R were correlated with hyponatremia and returned to baseline on correction; however, serum renin levels remained elevated. Serum ADH was related to hyponatremia but ADH-R and renin were not. ADH-R and renin levels did not significantly differ in CSW and SIADH.

Conclusion

CSW is the commonest cause of hyponatremia in TBM and correlates with disease severity. ADH is related to hyponatremia, but ADH receptor and renin are not.

Highlights

  • Hyponatremia in TBM is a frequent finding, attributable to CSW.

  • Differentiation between CSW and SIADH is crucial for their management.

  • Serum ADH was related to hyponatremia but ADH receptors and renin levels were not Serum ADH was related to  hyponatremia but ADH receptors and renin levels were not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data will be available on the reasonable request from investigator.

References

  1. Misra UK, Kalita J, Bhoi SK, Singh RK (2016) A study of hyponatremia in tuberculous meningitis. J Neurol Sci 367:152–157

    Article  CAS  PubMed  Google Scholar 

  2. Cotton MF, Donald PR, Schoeman JF, Aalbers C, Van Zyl LE, Lombard C (1991) Lombard, Plasma arginine vasopressin and the syndrome of inappropriate antidiuretic hormone secretion in tuberculous meningitis. Pediatr Infect Dis J 10:837–842

    Article  CAS  PubMed  Google Scholar 

  3. Singh BS, Patwari AK, Deb M (1994) Serum sodium and osmolal changes in tuberculous meningitis. Indian Pediatr 31(11):1345–1350

    CAS  PubMed  Google Scholar 

  4. Christopher R, Gourie-Devi M (1997) The syndrome of inappropriate antidiuretic hormone secretion in tuberculous meningitis. J Assoc Physicians India 45:933–935

    Google Scholar 

  5. Patwari AK, Singh BS, Manorama DE (1995) Inappropriate secretion of antidiuretic hormone in acute bacterial meningitis. Ann Trop Paediatr 15:179–183

    Article  CAS  PubMed  Google Scholar 

  6. Misra UK, Kalita J, Kumar M, Neyaz Z (2018) Hypovolemia due to cerebral salt wasting may contribute to stroke in tuberculous meningitis. QJM 111(7):455–460

    Article  CAS  PubMed  Google Scholar 

  7. Berendes E, Walter M, Cullen P, Prien T, Van Aken H, Horsthemke J, Schulte M, von Wild K, Scherer R (1997) Secretion of brain natriuretic peptide in patients with aneurysmal subarachnoid haemorrhage. Lancet 349(9047):245–249

    Article  CAS  PubMed  Google Scholar 

  8. Misra UK, Kalita J, Kumar M, Tripathi A (2018) A study of atrial and brain natriuretic peptides in tuberculous meningitis and acute encephalitis. Int J Tuberc Lung Dis 22(4):452–457

    Article  CAS  PubMed  Google Scholar 

  9. Cerdà-Esteve M, Cuadrado-Godia E, Chillaron JJ, Pont-Sunyer C, Cucurella G, Fernández M, Goday A, Cano-Pérez JF, Rodríguez-Campello A, Roquer J (2008) Cerebral salt wasting syndrome: review. Eur J Intern Med 19(4):249–254

    Article  PubMed  Google Scholar 

  10. Di Bona GF (2000) Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol-Regul Integr Compar Physiol 279(5):R1517–R1524

    Article  CAS  Google Scholar 

  11. Kappy MS, Ganong CA (1996) Cerebral salt wasting in children: the role of atrial natriuretic hormone. Adv Pediatr 43:271–308

    CAS  PubMed  Google Scholar 

  12. Taplin CE, Cowell CT, Silink M, Ambler GR (2006) Fludrocortisone therapy in cerebral salt wasting. Pediatrics 118(6):e1904–e1908

    Article  PubMed  Google Scholar 

  13. Marais S, Thwaites G, Schoeman JF, Török ME, Misra UK, Prasad K, Donald PR, Wilkinson RJ, Marais BJ (2010) Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect Dis 10(11):803–812

    Article  PubMed  Google Scholar 

  14. Misra UK, Kalita J, Kumar M (2018) Safety and efficacy of fludrocortisone in the treatment of cerebral salt wasting in patients with tuberculous meningitis: a randomized clinical trial. JAMA Neurol 75(11):1383–1391

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cotton MF, Donald PR, Schoeman JF, Van Zyl LE, Aalbers C, Lombard CJ (1993) Raised intracranial pressure, the syndrome of inappropriate antidiuretic hormone secretion, and arginine vasopressin in tuberculous meningitis. Childs Nerv Syst 9(1):10–5 discussion 15-6

    Article  CAS  PubMed  Google Scholar 

  16. Fu L, Ge HL, Li J, Chen GY, Li YS, Xie RS, Fan CY (1993) Correlation of hyponatremia with plasma renin activity, antidiuretic hormone and brain natriuretic peptide in chronic heart failure. Zhonghua Xin Xue Guan Bing Za Zhi 34(9):781–783

    Google Scholar 

  17. Caldwell HK, Young WS III (2006) Oxytocin and vasopressin: genetics and behavioral implications (PDF). In: Lajtha A, Lim R (eds) Handbook of neurochemistry and molecular neurobiology: neuroactive proteins and peptides, 3rd edn. Springer, Berlin, pp 573–607

    Chapter  Google Scholar 

  18. Goldmann A, Hoehne C, Fritz GA, Unger J, Ahlers O, Nachtigall I, Boemke W (2008) Combined vs. isoflurane/fentanyl anesthesia for major abdominal surgery: effects on hormones and hemodynamics. Med Sci Monit 14(9):CR445-52

    CAS  PubMed  Google Scholar 

  19. Furuya K, Shimizu R, Hirabayashi Y, Ishii R, Fukuda H (1993) Stress hormone responses to major intra-abdominal surgery during and immediately after sevoflurane-nitrous oxide anaesthesia in elderly patients. Can J Anaesth 40(5 Pt 1):435–439

    Article  CAS  PubMed  Google Scholar 

  20. Palmer BF (2000) Hyponatraemia in a neurosurgical patient: syndrome of inappropriate antidiuretic hormone secretion versus cerebral salt wasting. Nephrol Dial Transplant 15(2):262–268

    Article  CAS  PubMed  Google Scholar 

  21. Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Eng J Med 339(5):321–328

    Article  CAS  Google Scholar 

  22. Al-Mufti H (1984) Hyponatremia due to cerebral salt-wasting syndrome: combined cerebral and distal tubular lesion. Am J Med 77:740–746

    Article  CAS  PubMed  Google Scholar 

  23. Solomon RA, Post KD, McMurtry JG III (1984) Depression of circulating blood volume in patients after subarachnoid hemorrhage: implications for the management of symptomatic vasospasm. Neurosurgery 15(3):354–361

    Article  CAS  PubMed  Google Scholar 

  24. Mason JW (1968) A review of psychoendocrine research on the pituitary-adrenal cortical system. Psychosom Med 30(5):576–607

    Article  Google Scholar 

  25. Harrigan MR (2001) Cerebral salt wasting syndrome. Crit Care Clin 17(1):125–138

    Article  CAS  PubMed  Google Scholar 

  26. Tripathi A, Thakur RS, Kalita J, Patel DK, Misra UK (2021) Is cerebral salt wasting related to sympathetic dysregulation in tuberculous meningitis? Neurosci Lett 747:135671

    Article  CAS  PubMed  Google Scholar 

  27. Narotam PK, Kemp M, Buck R, Gouws E, van Dellen JR, Bhoola KD (1994) Hyponatremic natriuretic syndrome in tuberculous meningitis: the probable role of atrial natriuretic peptide. Neurosurgery 34(6):982–8 discussion 988

    CAS  PubMed  Google Scholar 

  28. Patwari AK, Singh BS, Manorama DEB (1995) Inappropriate secretion of antidiuretic hormone in acute bacterial meningitis. Ann Trop Paediatr 15(2):179–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Shakti Kumar for secretarial help.

Author information

Authors and Affiliations

Authors

Contributions

Usha K Misra: Conceptualization, investigation, analysis and interpretation of data, validation, writing—original draft preparation, supervision, methodology, administration. Mritunjai Kumar: Investigation, analysis and interpretation of data, methodology, administration. Jayantee Kalita: Investigation, analysis and interpretation of data, methodology, administration, supervision, writing, and editing. Surya Kant: Investigation, analysis and interpretation of data. Abhilasha Tripathi: Collected the samples, conducted the experiments and analysis, interpretation of data, writing, and editing.

Corresponding author

Correspondence to Usha K. Misra.

Ethics declarations

Conflict of interest

None.

Ethical approval

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A., Kumar, M., Kalita, J. et al. Renin, antidiuretic hormone (ADH), and ADH receptor levels in cerebral salt wasting associated with tuberculous meningitis. Neurol Sci 43, 3361–3369 (2022). https://doi.org/10.1007/s10072-021-05681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05681-6

Keywords

Navigation