Skip to main content

Advertisement

Log in

A systematic review of molecular approaches that link mitochondrial dysfunction and neuroinflammation in Parkinson’s disease

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder that affects 1% of the population worldwide. Etiology of PD is likely to be multi-factorial such as protein misfolding, mitochondrial dysfunction, oxidative stress, and neuroinflammation that contributes to the pathology of Parkinson’s disease (PD), numerous studies have shown that mitochondrial dysfunction may play a key role in the dopaminergic neuronal loss. In multiple ways, the two most important are the activation of neuroinflammation and mitochondrial dysfunction, while mitochondrial dysfunction could cause neuroinflammation and vice versa. Thus, the mitochondrial proteins are the highly promising target for the development of PD. However, the limited amount of dopaminergic neurons prevented the detailed investigation of Parkinson’s disease with regard to mitochondrial dysfunction. Both genetic and environmental factors are also associated with mitochondrial dysfunction and PD pathogenesis. The induction of PD by neurotoxins that inhibit mitochondrial complex I provide direct evidence linking mitochondrial dysfunction to PD. A decrease of mitochondrial complex I activity is observed in PD brain and in neurotoxin- or genetic factor-induced in vitro and in vivo models. Moreover, PINK1, Parkin, DJ-1 and LRRK2 mitochondrial PD gene products have important roles in mitophagy, a cellular process that clear damaged mitochondria. This review paper would discuss the evidence for the mitochondrial dysfunction and neuroinflammation in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Abrams AJ, Farooq A, Wang G (2011) S-nitrosylation of ApoE in Alzheimer’s disease. Biochemistry 50:3405–3407

    Article  CAS  PubMed  Google Scholar 

  2. Al-Kuraishy HM, Al-Gareeb AI (2020) Citicoline improves human vigilance and visual working memory: the role of neuronal activation and oxidative stress. Basic Clin Neurosci 11:423

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Al-Kuraishy HM, Al-Gareeb AI, Naji MT, Al-Mamorry F (2020) Role of vinpocetine in ischemic stroke and poststroke outcomes: a critical review. Brain Circ 6:1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Angeles DC et al (2011) Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Hum Mutat 32:1390–1397

    Article  CAS  PubMed  Google Scholar 

  5. Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251

    Article  CAS  PubMed  Google Scholar 

  6. Barnum CJ, Tansey MG (2010) Modeling neuroinflammatory pathogenesis of Parkinson’s disease. In: Progress in brain research, vol 184. Elsevier, pp 113–132

  7. Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radical Biol Med 32:797–803

    Article  CAS  Google Scholar 

  8. Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    Article  CAS  PubMed  Google Scholar 

  9. Bilbo SD, Schwarz JM (2012) The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 33:267–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bjarnadóttir K, Benkhoucha M, Merkler D, Weber MS, Payne NL, Bernard CC, Molnarfi N, Lalive PH (2016) B cell-derived transforming growth factor-β1 expression limits the induction phase of autoimmune neuroinflammation. Scientific reports 6(1):1–14

  11. Blandini F, Armentero M-T, Martignoni E (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 14:S124–S129

    Article  PubMed  Google Scholar 

  12. Bose A, Beal MF (2016) Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 139:216–231

    Article  CAS  PubMed  Google Scholar 

  13. Burté F, De Girolamo LA, Hargreaves AJ, Billett EE (2011) Alterations in the mitochondrial proteome of neuroblastoma cells in response to complex 1 inhibition. J Proteome Res 10:1974–1986

    Article  PubMed  CAS  Google Scholar 

  14. Castellani RJ et al (2002) Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci Lett 319:25–28

    Article  CAS  PubMed  Google Scholar 

  15. Castillo-Quan JI (2011) Parkin’control: regulation of PGC-1α through PARIS in Parkinson’s disease. Dis Mod Mechan 4:427–429

    Article  Google Scholar 

  16. Cerveny KL, Tamura Y, Zhang Z, Jensen RE, Sesaki H (2007) Regulation of mitochondrial fusion and division. Trends Cell Biol 17:563–569

    Article  CAS  PubMed  Google Scholar 

  17. Chao YX, He BP, Tay SSW (2009) Mesenchymal stem cell transplantation attenuates blood brain barrier damage and neuroinflammation and protects dopaminergic neurons against MPTP toxicity in the substantia nigra in a model of Parkinson’s disease. J Neuroimmunol 216:39–50

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18:R169–R176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Costa G (2014) Vulnerability to cognitive, neurotoxic and neuroinflammatory effects of toxins that induce Parkinson’s disease after administration of amphetamine-related drugs in mice. Universita'degli Studi di Cagliari, Cagliari

  20. Culbertson CT, Mickleburgh TG, Stewart-James SA, Sellens KA, Pressnall M (2013) Micro total analysis systems: fundamental advances and biological applications. Anal Chem 86:95–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90

    Article  PubMed  Google Scholar 

  22. Dagda RK, Cherra SJ, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deng H, Dodson MW, Huang H, Guo M (2008) The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci 105:14503–14508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dexter DT, Jenner P (2013) Parkinson disease: from pathology to molecular disease mechanisms. Free Radical Biol Med 62:132–144

    Article  CAS  Google Scholar 

  25. Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64:1019–1026

    Article  CAS  PubMed  Google Scholar 

  26. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biol Med 11:81–128

    Article  CAS  Google Scholar 

  27. Exner N, Lutz AK, Haass C, Winklhofer KF (2012) Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J 31:3038–3062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gautier CA, Kitada T, Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci 105:11364–11369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Geisler S et al (2010) The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 6:871–878

    Article  CAS  PubMed  Google Scholar 

  30. Gu X-L, Long C-X, Sun L, Xie C, Lin X, Cai H (2010) Astrocytic expression of Parkinson’s disease-related A53T α-synuclein causes neurodegeneration in mice. Mol Brain 3:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hartley DP, Kroll DJ, Petersen DR (1997) Prooxidant-initiated lipid peroxidation in isolated rat hepatocytes: detection of 4-hydroxynonenal-and malondialdehyde-protein adducts. Chem Res Toxicol 10:895–905

    Article  CAS  PubMed  Google Scholar 

  32. Heeman B et al (2011) Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J Cell Sci 124:1115–1125

    Article  CAS  PubMed  Google Scholar 

  33. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis Nature Reviews. Neurology 4:600

    CAS  PubMed  Google Scholar 

  34. Hong Z et al (2010) DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133:713–726

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hsieh M-H et al (2012) Effects of MK-801 on recognition and neurodegeneration in an MPTP-induced Parkinson’s rat model. Behav Brain Res 229:41–47

    Article  CAS  PubMed  Google Scholar 

  36. Hu X et al (2008) Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. J Immunol 181:7194–7204

    Article  CAS  PubMed  Google Scholar 

  37. Hyun DH, Lee MH, Halliwell B, Jenner P (2002) Proteasomal dysfunction induced by 4-hydroxy-2, 3-trans-nonenal, an end-product of lipid peroxidation: a mechanism contributing to neurodegeneration? J Neurochem 83:360–370

    Article  CAS  PubMed  Google Scholar 

  38. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104

    Article  CAS  PubMed  Google Scholar 

  39. Kang SS, McGavern DB (2009) Inflammation on the mind: visualizing immunity in the central nervous system. In: Visualizing Immunity. Springer, pp 227–263

  40. Kawajiri S, Saiki S, Sato S, Hattori N (2011) Genetic mutations and functions of PINK1. Trends Pharmacol Sci 32:573–580

    Article  CAS  PubMed  Google Scholar 

  41. Kazlauskaite A, Muqit MM (2015) PINK1 and Parkin–mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson’s disease. FEBS J 282:215–223

    Article  CAS  PubMed  Google Scholar 

  42. Keeney PM, Xie J, Capaldi RA, Bennett JP (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:5256–5264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kikuchi A et al (2002) Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 9:244–248

    Article  CAS  PubMed  Google Scholar 

  44. Kim Y et al (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377:975–980

    Article  CAS  PubMed  Google Scholar 

  45. Kitada T et al (1998) Mutations in the Parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392:605

  46. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787

    Article  CAS  PubMed  Google Scholar 

  47. Lin X et al (2012) Conditional expression of Parkinson’s disease-related mutant α-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J Neurosci 32:9248–9264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu D, Wang Z, Liu S, Wang F, Zhao S, Hao A (2011) Anti-inflammatory effects of fluoxetine in lipopolysaccharide (LPS)-stimulated microglial cells. Neuropharmacology 61:592–599

    Article  CAS  PubMed  Google Scholar 

  49. Lu M, Su C, Qiao C, Bian Y, Ding J, Hu G (2016) Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson’s disease via autophagy and mitochondrial ROS clearance. Int J Neuropsychopharmacol 19:pyw047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM-Y (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma H, Li D, Rengarajan T, Manokaran K (2018) Effect of simvastatin on neuroinflammation in microglial cells via mitogen-activated protein kinase and nuclear factor κB pathways. Pharmacogn Mag 14:237

    Article  CAS  Google Scholar 

  52. Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543

    Article  CAS  PubMed  Google Scholar 

  53. Masoud S et al (2015) Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits. Neurobiol Dis 74:66–75

    Article  CAS  PubMed  Google Scholar 

  54. Moehle MS et al (2012) LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci 32:1602–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mogi M et al (2000) Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm 107:335–341

    Article  CAS  PubMed  Google Scholar 

  56. Morris G, Berk M (2015) The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 13:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mosley RL et al (2006) Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6:261–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26:733–744

    Article  CAS  PubMed  Google Scholar 

  59. Norris EH, Uryu K, Leight S, Giasson BI, Trojanowski JQ, Lee VM-Y (2007) Pesticide exposure exacerbates α-synucleinopathy in an A53T transgenic mouse model. Am J Pathol 170:658–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paisán-Ruiz C, Lewis PA, Singleton AB (2013) LRRK2: cause, risk, and mechanism. J Parkinsons Dis 3:85–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Patel AS et al (2015) Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis. PloS one 10:e0121246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Pickrell AM, Youle RJ (2015) The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85:257–273

  63. Prorok T, Jana M, Patel D, Pahan K (2019) Cinnamic acid protects the nigrostriatum in a mouse model of Parkinson’s disease via peroxisome proliferator-activated receptorα. Neurochemical Research:1–12

  64. Raivich G, Jones L, Werner A, Blüthmann H, Doetschmann T, Kreutzberg G (1999) Molecular signals for glial activation: pro-and anti-inflammatory cytokines in the injured brain. In: Current Progress in the Understanding of Secondary Brain Damage from Trauma and Ischemia. Springer, pp 21–30

  65. Raza H, John A, Brown EM, Benedict S, Kambal A (2008) Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells. Toxicol Appl Pharmacol 226:161–168

    Article  CAS  PubMed  Google Scholar 

  66. Roberts LJ, Fessel JP, Davies SS (2005) The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Brain Pathol 15:143–148

    Article  CAS  PubMed  Google Scholar 

  67. Ryan BJ, Hoek S, Fon EA, Wade-Martins R (2015) Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem Sci 40:200–210

    Article  CAS  PubMed  Google Scholar 

  68. Sanders LH, Greenamyre JT (2013) Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radical Biol Med 62:111–120

    Article  CAS  Google Scholar 

  69. Schulz-Schaeffer WJ (2010) The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 120:131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Serviddio G et al (2008) Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia–reperfusion injury. Gut 57:957–965

    Article  CAS  PubMed  Google Scholar 

  71. Shadrina M, Slominsky P, Limborska S (2010) Molecular mechanisms of pathogenesis of Parkinson’s disease. In: International review of cell and molecular biology, vol 281. Elsevier, pp 229–266

  72. Sharp WW et al (2014) Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J 28:316–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shimizu S (2018) Association between autophagy and neurodegenerative diseases. Front Neurosci 12:255

    Article  PubMed  PubMed Central  Google Scholar 

  74. Somayajulu-Niţu M, Sandhu JK, Cohen J, Sikorska M, Sridhar TS, Matei A, Borowy-Borowski H, Pandey S (2009) Paraquat induces oxidative stress, neuronal loss in substantia nigra region and Parkinsonism in adult rats: neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q 10. BMC Neurosci 10(1):1–2

  75. Song X, Rahimnejad S, Zhou W, Cai L, Lu K (2019) Molecular characterization of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC1α) and its role in mitochondrial biogenesis in blunt snout bream (Megalobrama amblycephala). Front Physiol 9:1957

  76. Su B, Wang X, Zheng L, Perry G, Smith MA, Zhu X (2010) Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1802:135–142

  77. Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61:654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Toyokuni S, Uchida K, Okamoto K, Hattori-Nakakuki Y, Hiai H, Stadtman ER (1994) Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc Natl Acad Sci 91:2616–2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Trempe J-F, Fon EA (2013) Structure and function of Parkin, PINK1, and DJ-1, the three musketeers of neuroprotection. Front Neurol 4:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107–110

  81. Uttara B, Singh AV, Zamboni P, Mahajan R (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Uversky VN (2004) Neurotoxicant-induced animal models of Parkinson’s disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res 318(1):225–241

  83. Uversky VN (2008) α-synuclein misfolding and neurodegenerative diseases. Curr Protein Pept Sci 9:507–540

    Article  CAS  PubMed  Google Scholar 

  84. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E (2017) The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 482:426–431

    Article  CAS  PubMed  Google Scholar 

  85. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  86. van der Merwe C, Jalali Sefid Dashti Z, Christoffels A, Loos B, Bardien S (2015) Evidence for a common biological pathway linking three Parkinson’s disease-causing genes: Parkin, PINK1 and DJ-1. Eur J Neurosci 41:1113–1125

  87. Vandiver MS et al (2013) Sulfhydration mediates neuroprotective actions of parkin. Nat Commu 4:1626

    Article  CAS  Google Scholar 

  88. Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L (2011) Pathological roles of α-synuclein in neurological disorders. Lancet Neurol 10:1015–1025

    Article  CAS  PubMed  Google Scholar 

  89. Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, Kuum M, Kaasik A (2009) PGC-1α and PGC-1β regulate mitochondrial density in neurons. J Biol Chem 284:21379–21385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Whitton P (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1802:29–44

  92. Yamagami K, Yamamoto Y, Kume M, Ishikawa Y, Yamaoka Y, Hiai H, Toyokuni S (2000) Formation of 8-hydroxy-2′-deoxyguanosine and 4-hydroxy-2-nonenal-modified proteins in rat liver after ischemia-reperfusion: distinct localization of the two oxidatively modified products. Antioxid Redox Signal 2:127–136

    Article  CAS  PubMed  Google Scholar 

  93. Yang Y et al (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci 103:10793–10798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yin Z, Pascual C, Klionsky DJ (2016) Autophagy: machinery and regulation. Microbial cell 3:588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154:1423–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang S, Eitan E, Wu T-Y, Mattson MP (2018) Intercellular transfer of pathogenic α-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal. Neurobiol Aging 61:52–65

    Article  CAS  PubMed  Google Scholar 

  97. Zhou W, Bercury K, Cummiskey J, Luong N, Lebin J, Freed CR (2011) Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J Biol Chem 286:14941–14951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors sincerely acknowledge Malarvizhi R, Meenakshi B, and Vidhushini Sekar for their help in literature collection

Author information

Authors and Affiliations

Authors

Contributions

SM, AK, and SS drafted the manuscript MS and SM reviewed and edited the manuscript.

Corresponding author

Correspondence to Murugan Sevanan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, S., Sevanan, M., Krishnamoorthy, A. et al. A systematic review of molecular approaches that link mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurol Sci 42, 4459–4469 (2021). https://doi.org/10.1007/s10072-021-05551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05551-1

Keywords

Navigation