Skip to main content

Advertisement

Log in

Progression of optic atrophy in traumatic optic neuropathy: retrograde neuronal degeneration in humans

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

We used optical coherence tomography (OCT) to document the time course of retrograde neuronal degeneration following indirect optic nerve injury.

Methods

We retrospectively studied patients diagnosed with unilateral indirect traumatic optic neuropathy (TON). Patients with total or near-total optic atrophy were included. All patients underwent complete ophthalmological examinations, including OCT imaging, within 1 day and at 1, 2, 3, 4, 6, 8, 12, 24, and 48 weeks after trauma.

Results

The mean thicknesses of the circumpapillary retinal nerve fiber layer (cpRNFL) and macular retinal ganglion cell-inner plexiform layer (mGCIPL) decreased significantly at 2 weeks after trauma (p = 0.027 and p = 0.043). Changes in mGCIPL thickness preceded changes in cpRNFL thickness. The rates of reduction in mGCIPL and cpRNFL thicknesses were greatest between 2 to 4 weeks and 4 to 6 weeks after trauma. The reduction in mGCIPL thickness then slowed, and stabilized at 12 weeks after trauma. The proportions of cpRNFL and mGCIPL losses at 2, 4, 6, 8, and 12 weeks compared to 24 weeks were 17.1, 33.7, 59.8, 77.9, and 87.9% and 30.0, 73.3, 76.1, 88.3, and 97.9%, respectively.

Conclusions

OCT revealed optic atrophy progression 2 weeks after trauma, which was most rapid from 2 to 6 weeks, and then gradually stabilized. Loss of retinal ganglion cell bodies and dendrites seemed to precede the axonal degeneration. Observations of morphological changes in retinal layers using OCT in TON patients improve our understanding of retrograde neuronal degeneration of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steinsapir KD, Goldberg RA (2011) Traumatic optic neuropathy: an evolving understanding. Am J Ophthalmol 151(6):928-933.e922. https://doi.org/10.1016/j.ajo.2011.02.007

    Article  PubMed  Google Scholar 

  2. McClenaghan FC, Ezra DG, Holmes SB (2011) Mechanisms and management of vision loss following orbital and facial trauma. Curr Opin Ophthalmol 22(5):426–431. https://doi.org/10.1097/ICU.0b013e3283499420

    Article  PubMed  CAS  Google Scholar 

  3. Warner N, Eggenberger E (2010) Traumatic optic neuropathy: a review of the current literature. Curr Opin Ophthalmol 21(6):459–462. https://doi.org/10.1097/ICU.0b013e32833f00c9

    Article  PubMed  Google Scholar 

  4. Beirowski B, Nogradi A, Babetto E, Garcia-Alias G, Coleman MP (2010) Mechanisms of axonal spheroid formation in central nervous system Wallerian degeneration. J Neuropathol Exp Neurol 69(5):455–472. https://doi.org/10.1097/NEN.0b013e3181da84db

    Article  PubMed  Google Scholar 

  5. Geden MJ, Deshmukh M (2016) Axon degeneration: context defines distinct pathways. Curr Opin Neurobiol 39:108–115. https://doi.org/10.1016/j.conb.2016.05.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Selles-Navarro I, Ellezam B, Fajardo R, Latour M, McKerracher L (2001) Retinal ganglion cell and nonneuronal cell responses to a microcrush lesion of adult rat optic nerve. Exp Neurol 167(2):282–289. https://doi.org/10.1006/exnr.2000.7573

    Article  PubMed  CAS  Google Scholar 

  7. Liu Y, McDowell CM, Zhang Z, Tebow HE, Wordinger RJ, Clark AF (2014) Monitoring retinal morphologic and functional changes in mice following optic nerve crush. Invest Ophthalmol Vis Sci 55(6):3766–3774. https://doi.org/10.1167/iovs.14-13895

    Article  PubMed  Google Scholar 

  8. Chauhan BC, Stevens KT, Levesque JM, Nuschke AC, Sharpe GP, O’Leary N, Archibald ML, Wang X (2012) Longitudinal in vivo imaging of retinal ganglion cells and retinal thickness changes following optic nerve injury in mice. PLoS One 7(6):e40352. https://doi.org/10.1371/journal.pone.0040352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Choe TE, Abbott CJ, Piper C, Wang L, Fortune B (2014) Comparison of longitudinal in vivo measurements of retinal nerve fiber layer thickness and retinal ganglion cell density after optic nerve transection in rat. PLoS One 9(11):e113011. https://doi.org/10.1371/journal.pone.0113011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dratviman-Storobinsky O, Hasanreisoglu M, Offen D, Barhum Y, Weinberger D, Goldenberg-Cohen N (2008) Progressive damage along the optic nerve following induction of crush injury or rodent anterior ischemic optic neuropathy in transgenic mice. Mol Vis 14:2171–2179

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Munguba GC, Galeb S, Liu Y, Landy DC, Lam D, Camp A, Samad S, Tapia ML, Lee RK (2014) Nerve fiber layer thinning lags retinal ganglion cell density following crush axonopathy. Invest Ophthalmol Vis Sci 55(10):6505–6513. https://doi.org/10.1167/iovs.14-14525

    Article  PubMed  PubMed Central  Google Scholar 

  12. Quigley HA, Davis EB, Anderson DR (1977) Descending optic nerve degeneration in primates. Invest Ophthalmol Vis Sci 16(9):841–849

    PubMed  CAS  Google Scholar 

  13. Cunha LP, Costa-Cunha LV, Malta RF, Monteiro ML (2009) Comparison between retinal nerve fiber layer and macular thickness measured with OCT detecting progressive axonal loss following traumatic optic neuropathy. Arq Bras Oftalmol 72(5):622–625. https://doi.org/10.1590/s0004-27492009000500004

    Article  PubMed  Google Scholar 

  14. Kanamori A, Nakamura M, Yamada Y, Negi A (2012) Longitudinal study of retinal nerve fiber layer thickness and ganglion cell complex in traumatic optic neuropathy. Arch Ophthalmol 130(8):1067–1069. https://doi.org/10.1001/archophthalmol.2012.470

    Article  PubMed  Google Scholar 

  15. Lee JY, Cho K, Park KA, Oh SY (2016) Analysis of retinal layer thicknesses and their clinical correlation in patients with traumatic optic neuropathy. PLoS One 11(6):e0157388. https://doi.org/10.1371/journal.pone.0157388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hansapinyo L, Cheng AC, Chan NC, Chan CK (2017) Optic disc and macular imaging in blind eyes from non-glaucomatous optic neuropathy: a study with spectral-domain optical coherence tomography. Neuroophthalmology 41(1):1–6. https://doi.org/10.1080/01658107.2016.1238487

    Article  PubMed  Google Scholar 

  17. Wong E, Yoshioka N, Kalloniatis M, Zangerl B (2015) Cirrus HD-OCT short-term repeatability of clinical retinal nerve fiber layer measurements. Optom Vis Sci 92(1):83–88. https://doi.org/10.1097/opx.0000000000000452

    Article  PubMed  Google Scholar 

  18. Wadhwani M, Bali SJ, Satyapal R, Angmo D, Sharma R, Pandey V, Dada T (2015) Test-retest variability of retinal nerve fiber layer thickness and macular ganglion cell-inner plexiform layer thickness measurements using spectral-domain optical coherence tomography. J Glaucoma 24(5):e109-115. https://doi.org/10.1097/ijg.0000000000000203

    Article  PubMed  Google Scholar 

  19. Scott IU, Schein OD, West S, Bandeen-Roche K, Enger C, Folstein MF (1994) Functional status and quality of life measurement among ophthalmic patients. Arch Ophthalmol 112(3):329–325. https://doi.org/10.1001/archopht.1994.01090150059023

    Article  PubMed  CAS  Google Scholar 

  20. Levkovitch-Verbin H (2004) Animal models of optic nerve diseases. Eye (Lond) 18(11):1066–1074. https://doi.org/10.1038/sj.eye.6701576

    Article  CAS  Google Scholar 

  21. Greenfield DS, Bagga H, Knighton RW (2003) Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 121(1):41–46. https://doi.org/10.1001/archopht.121.1.41

    Article  PubMed  Google Scholar 

  22. Kanamori A, Catrinescu MM, Belisle JM, Costantino S, Levin LA (2012) Retrograde and Wallerian axonal degeneration occur synchronously after retinal ganglion cell axotomy. Am J Pathol 181(1):62–73. https://doi.org/10.1016/j.ajpath.2012.03.030

    Article  PubMed  PubMed Central  Google Scholar 

  23. Medeiros FA, Moura FC, Vessani RM, Susanna R Jr (2003) Axonal loss after traumatic optic neuropathy documented by optical coherence tomography. Am J Ophthalmol 135(3):406–408. https://doi.org/10.1016/s0002-9394(02)02049-4

    Article  PubMed  Google Scholar 

  24. Miki A, Endo T, Morimoto T, Matsushita K, Fujikado T, Nishida K (2015) Retinal nerve fiber layer and ganglion cell complex thicknesses measured with spectral-domain optical coherence tomography in eyes with no light perception due to nonglaucomatous optic neuropathy. Jpn J Ophthalmol 59(4):230–235. https://doi.org/10.1007/s10384-015-0386-0

    Article  PubMed  Google Scholar 

  25. Mwanza JC, Kim HY, Budenz DL, Warren JL, Margolis M, Lawrence SD, Jani PD, Thompson GS, Lee RK (2015) Residual and dynamic range of retinal nerve fiber layer thickness in glaucoma: comparison of three OCT platforms. Invest Ophthalmol Vis Sci 56(11):6344–6351. https://doi.org/10.1167/iovs.15-17248

    Article  PubMed  PubMed Central  Google Scholar 

  26. Minzenberg M, Berkelaar M, Bray G, Mckerracher L (1995) Changes in retinal ganglion cell axons after optic nerve crush: neurofilament expression is not the sole determinant of calibre. Biochem Cell Biol 73(9–10):599–604. https://doi.org/10.1139/o95-065

    Article  PubMed  CAS  Google Scholar 

  27. Contreras I, Noval S, Rebolleda G, Munoz-Negrete FJ (2007) Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology 114(12):2338–2344. https://doi.org/10.1016/j.ophtha.2007.05.042

    Article  PubMed  Google Scholar 

  28. Fisher JB, Jacobs DA, Markowitz CE, Galetta SL, Volpe NJ, Nano-Schiavi ML, Baier ML, Frohman EM, Winslow H, Frohman TC, Calabresi PA, Maguire MG, Cutter GR, Balcer LJ (2006) Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 113(2):324–332. https://doi.org/10.1016/j.ophtha.2005.10.040

    Article  PubMed  Google Scholar 

  29. Barboni P, Savini G, Valentino ML, Montagna P, Cortelli P, De Negri AM, Sadun F, Bianchi S, Longanesi L, Zanini M, de Vivo A, Carelli V (2005) Retinal nerve fiber layer evaluation by optical coherence tomography in Leber’s hereditary optic neuropathy. Ophthalmology 112(1):120–126. https://doi.org/10.1016/j.ophtha.2004.06.034

    Article  PubMed  Google Scholar 

  30. Zoumalan Christopher I, Agarwal Madhu, Sadun Alfredo A (2005) Optical coherence tomography can measure axonal loss in patients with ethambutol-induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol 243(5):410–416. https://doi.org/10.1007/s00417-004-1053-1

    Article  PubMed  Google Scholar 

  31. Levin LA, Beck RW, Joseph MP, Seiff S, Kraker R (1999) The treatment of traumatic optic neuropathy: the International Optic Nerve Trauma Study. Ophthalmology 106(7):1268–1277. https://doi.org/10.1016/s0161-6420(99)00707-1

    Article  PubMed  CAS  Google Scholar 

  32. Sosin M, De La Cruz C, Mundinger GS, Saadat SY, Nam AJ, Manson PN, Christy MR, Bojovic B, Rodriguez ED (2016) Treatment outcomes following traumatic optic neuropathy. Plast Reconstr Surg 137(1):231–238. https://doi.org/10.1097/prs.0000000000001907

    Article  PubMed  CAS  Google Scholar 

  33. Yu-Wai-Man Patrick, Griffiths Philip G (2013) Steroids for traumatic optic neuropathy. Cochrane Database Syst Rev 2013(6):Cd006032. https://doi.org/10.1002/14651858.CD006032.pub4

    Article  PubMed Central  Google Scholar 

  34. Entezari M, Rajavi Z, Sedighi N, Daftarian N, Sanagoo M (2007) High-dose intravenous methylprednisolone in recent traumatic optic neuropathy; a randomized double-masked placebo-controlled clinical trial. Graefes Arch Clin Exp Ophthalmol 245(9):1267–1271. https://doi.org/10.1007/s00417-006-0441-0

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YHL contributed to the conception and design of the study; JYS, HML, KNK, and SBL contributed to the acquisition and analysis of data; JYS, HML, and YHL contributed to the drafting of the text and preparing the figures. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yeon-Hee Lee.

Ethics declarations

Ethical approval

The study protocol was approved by the Chungnam National University Institutional Review Board of the Hospital. The study adhered to all relevant tenets of the Declaration of Helsinki.

Informed consent

Informed consent was obtained from each subject.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, J.Y., Lee, H.M., Lee, S.B. et al. Progression of optic atrophy in traumatic optic neuropathy: retrograde neuronal degeneration in humans. Neurol Sci 43, 1351–1358 (2022). https://doi.org/10.1007/s10072-021-05448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05448-z

Keywords

Navigation