Skip to main content
Log in

Temporal and extratemporal atrophic manifestation of temporal lobe epilepsy using voxel-based morphometry and corticometry: clinical application in lateralization of epileptogenic zone

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Advances in MRI acquisition and data processing have become important for revealing brain structural changes. Previous studies have reported widespread structural brain abnormalities and cortical thinning in patients with temporal lobe epilepsy (TLE), as the most common form of focal epilepsy.

Methods

In this research, healthy control cases (n = 20) and patients with left TLE (n = 19) and right TLE (n = 14) were recruited, all underwent 3.0 T MRI with magnetization-prepared rapid gradient echo sequence to acquire T1-weighted images. Morphometric alterations in gray matter were identified using voxel-based morphometry (VBM). Volumetric alterations in subcortical structures and cortical thinning were also determined.

Results

Patients with left TLE demonstrated more prevailing and widespread changes in subcortical volumes and cortical thickness than right TLE, mainly in the left hemisphere, compared to the healthy group. Both VBM analysis and subcortical volumetry detected significant hippocampal atrophy in ipsilateral compared to contralateral side in TLE group. In addition to hippocampus, subcortical volumetry found the thalamus and pallidum bilaterally vulnerable to the TLE. Furthermore, the TLE patients underwent cortical thinning beyond the temporal lobe, affecting gray matter cortices in frontal, parietal, and occipital lobes in the majority of patients, more prevalently for left TLE cases. Exploiting volume changes in individual patients in the hippocampus alone led to 63.6% sensitivity and 100% specificity for lateralization of TLE.

Conclusion

Alteration of gray matter volumes in subcortical regions and neocortical temporal structures and also cortical gray matter thickness were evidenced as common effects of epileptogenicity, as manifested by the majority of cases in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. WHO (2019) Epilepsy [WWW Document]. URL https://www.who.int/news-room/fact-sheets/detail/epilepsy (accessed 8.21.19)

  2. Aaberg KM, Surén P, Søraas CL, Bakken IJ, Lossius MI, Stoltenberg C, Chin R (2017) Seizures, syndromes, and etiologies in childhood epilepsy: the International League Against Epilepsy 1981, 1989, and 2017 classifications used in a population-based cohort. Epilepsia 58:1880–1891

    Article  PubMed  Google Scholar 

  3. Duncan JS, Sander JW, Sisodiya SM, Walker MC (2006) Adult epilepsy. Lancet 367:1087–1100

    Article  PubMed  Google Scholar 

  4. Hon KL, Leung AKC, Torres AR (2018) Febrile infection-related epilepsy syndrome (fires): an overview of treatment and recent patents. Recent Patents Inflamm Allergy Drug Discov 12:128–135

    Article  CAS  Google Scholar 

  5. Chang B, Xu J (2018) Deep brain stimulation for refractory temporal lobe epilepsy: a systematic review and meta-analysis with an emphasis on alleviation of seizure frequency outcome. Childs Nerv Syst 34:321–327

    Article  PubMed  Google Scholar 

  6. Lee AT, Burke JF, Chunduru P, Molinaro AM, Knowlton R, Chang EF (2019) A historical cohort of temporal lobe surgery for medically refractory epilepsy: a systematic review and meta-analysis to guide future nonrandomized controlled trial studies. J Neurosurg 1:1–8

    Google Scholar 

  7. Blume WT, Holloway GM, Wiebe S (2001) Temporal epileptogenesis: localizing value of scalp and subdural interictal and ictal EEG data. Epilepsia 42:508–514

    Article  CAS  PubMed  Google Scholar 

  8. Arya R, Mangano FT, Horn PS, Holland KD, Rose DF, Glauser TA (2013) Adverse events related to extraoperative invasive EEG monitoring with subdural grid electrodes: a systematic review and meta-analysis. Epilepsia 54:828–839

    Article  PubMed  Google Scholar 

  9. Meng Y, Voisin MR, Suppiah S, Merali Z, Moghaddamjou A, Alotaibi NM, Manicat-Emo A, Weiss S, Go C, McCoy B (2018) Risk factors for surgical site infection after intracranial electroencephalography monitoring for epilepsy in the pediatric population. J Neurosurg Pediatr 22:31–36

    Article  PubMed  Google Scholar 

  10. Nazem-Zadeh M-R, Elisevich KV, Schwalb JM, Bagher-Ebadian H, Mahmoudi F, Soltanian-Zadeh H (2014a) Lateralization of temporal lobe epilepsy by multimodal multinomial hippocampal response-driven models. J Neurol Sci 347:107–118

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nazem-Zadeh M-R, Schwalb JM, Bagher-Ebadian H, Mahmoudi F, Hosseini M-P, Jafari-Khouzani K, Elisevich KV, Soltanian-Zadeh H (2014b) Lateralization of temporal lobe epilepsy by imaging-based response-driven multinomial multivariate models, in: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 5595–5598

  12. Lerch JP, van der Kouwe AJW, Raznahan A, Paus T, Johansen-Berg H, Miller KL, Smith SM, Fischl B, Sotiropoulos SN (2017) Studying neuroanatomy using MRI. Nat Neurosci 20:314–326

    Article  CAS  PubMed  Google Scholar 

  13. Kim H, Chupin M, Colliot O, Bernhardt BC, Bernasconi N, Bernasconi A (2012) Automatic hippocampal segmentation in temporal lobe epilepsy: impact of developmental abnormalities. Neuroimage 59:3178–3186

    Article  PubMed  Google Scholar 

  14. Duncan JS, Winston GP, Koepp MJ, Ourselin S (2016) Brain imaging in the assessment for epilepsy surgery. Lancet Neurol 15:420–433

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jack R, Cascino D, Zinsmeister AR, Sharbrough W, Hirschorn A, Twomey K (1990) Neuroradiology with MR volume of the hippocampal seizures : measurements 423–429

  16. Nazem-zadeh M, Schwalb JM, Elisevich KV, Bagher-ebadian H, Hamidian H, Akhondi-asl A, Jafari-khouzani K, Soltanian-zadeh H (2014) Lateralization of temporal lobe epilepsy using a novel uncertainty analysis of MR diffusion in hippocampus, cingulum, and fornix, and hippocampal volume and FLAIR intensity. J Neurol Sci 342:152–161. https://doi.org/10.1016/j.jns.2014.05.019

    Article  PubMed  PubMed Central  Google Scholar 

  17. Margerison JH, Corsellis JAN (1966) Epilepsy and the temporal lobes. Brain 89:499–530

    Article  CAS  PubMed  Google Scholar 

  18. Moghaddam HS et al (2020) Distinct patterns of hippocampal subfield volume loss in left and right mesial temporal lobe epilepsy. Neurol Sci:1–11

  19. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, Van Emde Boas W, Engel J, French J, Glauser TA, Mathern GW, Moshé SL, Nordli D, Plouin P, Scheffer IE (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 51:676–685. https://doi.org/10.1111/j.1528-1167.2010.02522.x

    Article  PubMed  Google Scholar 

  20. Mei D, Parrini E, Marini C, Guerrini R (2017) The impact of next-generation sequencing on the diagnosis and treatment of epilepsy in paediatric patients. Mol Diagn Ther 21:357–373

    Article  CAS  PubMed  Google Scholar 

  21. Sutula TP, Hagen J, Pitkänen A (2003) Do epileptic seizures damage the brain? Curr Opin Neurol 16:189–195

    Article  PubMed  Google Scholar 

  22. Mahmoudi F, Elisevich K, Bagher-Ebadian H, Nazem-Zadeh MR, Davoodi-Bojd E, Schwalb JM, et al(2018). Data mining MR image features of select structures for lateralization of mesial temporal lobe epilepsy. PLoS One. 2018;13(8):e0199137

  23. Alhusaini S, Whelan CD, Doherty CP, Delanty N, Fitzsimons M, Cavalleri GL (2015) Temporal cortex morphology in mesial temporal lobe epilepsy patients and their asymptomatic siblings. Cereb Cortex 26:1234–1241

    Article  PubMed  Google Scholar 

  24. Bernasconi N, Bernasconi A, Andermann F, Dubeau F, Feindel W, Reutens DC (1999) Entorhinal cortex in temporal lobe epilepsy: a quantitative MRI study. Neurology 52:1870–1876

    Article  CAS  PubMed  Google Scholar 

  25. Bernasconi N, Bernasconi A, Caramanos Z, Antel SB, Andermann F, Arnold DL (2003) Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region. Brain 126:462–469

    Article  CAS  PubMed  Google Scholar 

  26. Bernasconi N, Duchesne S, Janke A, Lerch J, Collins DL, Bernasconi A (2004) Whole-brain voxel-based statistical analysis of gray matter and white matter in temporal lobe epilepsy. Neuroimage 23:717–723. https://doi.org/10.1016/j.neuroimage.2004.06.015

    Article  CAS  PubMed  Google Scholar 

  27. Mueller SG, Laxer KD, Barakos J, Cheong I, Garcia P, Weiner MW (2009) Widespread neocortical abnormalities in temporal lobe epilepsy with and without mesial sclerosis. Neuroimage 46:353–359

    Article  CAS  PubMed  Google Scholar 

  28. Alvim MKM, Coan AC, Campos BM, Yasuda CL, Oliveira MC, Morita ME, Cendes F (2016) Progression of gray matter atrophy in seizure-free patients with temporal lobe epilepsy. Epilepsia 57:621–629

    Article  PubMed  Google Scholar 

  29. Bilevicius E, Yasuda CL, Silva MS, Guerreiro CAM, Lopes-Cendes I, Cendes F (2010) Antiepileptic drug response in temporal lobe epilepsy: a clinical and MRI morphometry study. Neurology 75:1695–1701

    Article  CAS  PubMed  Google Scholar 

  30. Bonilha L, Rorden C, Appenzeller S, Coan AC, Cendes F, Li LM (2006) Gray matter atrophy associated with duration of temporal lobe epilepsy. Neuroimage 32:1070–1079

    Article  PubMed  Google Scholar 

  31. Coan AC, Appenzeller S, Bonilha L, Li LM, Cendes F (2009) Seizure frequency and lateralization affect progression of atrophy in temporal lobe epilepsy. Neurology 73:834–842

    Article  CAS  PubMed  Google Scholar 

  32. Pittau F, Bisulli F, Mai R, Fares JE, Vignatelli L, Labate A, Naldi I, Avoni P, Parmeggiani A, Santucci M (2009) Prognostic factors in patients with mesial temporal lobe epilepsy. Epilepsia 50:41–44

    Article  PubMed  Google Scholar 

  33. Focke NK, Yogarajah M, Bonelli SB, Bartlett PA, Symms MR, Duncan JS (2008) Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage 40:728–737

    Article  PubMed  Google Scholar 

  34. Bonilha L, Elm JJ, Edwards JC, Morgan PS, Hicks C, Lozar C, Rumboldt Z, Roberts DR, Rorden C, Eckert MA (2010) How common is brain atrophy in patients with medial temporal lobe epilepsy? Epilepsia 51:1774–1779

    Article  PubMed  Google Scholar 

  35. Lerch J (2007) In-vivo analysis of cortical thickness using magnetic resonance images. Dissertation Abstracts International: Section B: The Sciences and Engineering 68(3-B):1467

  36. Bonilha L, Keller SS (2015) Quantitative MRI in refractory temporal lobe epilepsy: relationship with surgical outcomes. Quant Imaging Med Surg 5:204

    PubMed  PubMed Central  Google Scholar 

  37. Whelan CD, Altmann A, Botía JA, Jahanshad N, Hibar DP, Absil J, Alhusaini S, Alvim MKM, Auvinen P, Bartolini E, Bergo FPG, Bernardes T, Blackmon K, Braga B, Caligiuri ME, Calvo A, Carr SJ, Chen J, Chen S, Cherubini A, David P, Domin M, Foley S, França W, Haaker G, Isaev D, Keller SS, Kotikalapudi R, Kowalczyk MA, Kuzniecky R, Langner S, Lenge M, Leyden KM, Liu M, Loi RQ, Martin P, Mascalchi M, Morita ME, Pariente JC, Rodríguez-Cruces R, Rummel C, Saavalainen T, Semmelroch MK, Severino M, Thomas RH, Tondelli M, Tortora D, Vaudano AE, Vivash L, von Podewils F, Wagner J, Weber B, Yao Y, Yasuda CL, Zhang G, Bargalló N, Bender B, Bernasconi N, Bernasconi A, Bernhardt BC, Blümcke I, Carlson C, Cavalleri GL, Cendes F, Concha L, Delanty N, Depondt C, Devinsky O, Doherty CP, Focke NK, Gambardella A, Guerrini R, Hamandi K, Jackson GD, Kälviäinen R, Kochunov P, Kwan P, Labate A, McDonald CR, Meletti S, O'Brien TJ, Ourselin S, Richardson MP, Striano P, Thesen T, Wiest R, Zhang J, Vezzani A, Ryten M, Thompson PM, Sisodiya SM (2018) Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain 141(2):391–408

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alhusaini S, Doherty CP, Palaniyappan L, Scanlon C, Maguire S, Brennan P, Delanty N, Fitzsimons M, Cavalleri GL (2012) Asymmetric cortical surface area and morphology changes in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 53:995–1003

    Article  PubMed  Google Scholar 

  39. Bernhardt BC, Worsley KJ, Kim H, Evans AC, Bernasconi A, Bernasconi N (2009b) Longitudinal and cross-sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology 72:1747–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Labate A, Cerasa A, Aguglia U, Mumoli L, Quattrone A, Gambardella A (2011) Neocortical thinning in “benign” mesial temporal lobe epilepsy. Epilepsia 52:712–717

    Article  PubMed  Google Scholar 

  41. Caciagli L, Bernasconi A, Wiebe S, Koepp MJ, Bernasconi N, Bernhardt BC (2017) A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy: time is brain? Neurology 89:506–516

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821

    Article  CAS  PubMed  Google Scholar 

  43. Mechelli A, Price CJ, Friston KJ, Ashburner J (2005) Voxel-based morphometry of the human brain: methods and applications. Curr Med Imaging Rev 1:105–113

    Article  Google Scholar 

  44. Godinho R, Domingues V, Crespo EG, Ferrand N (2006) SPM 12 Manual. Mol Ecol 15:731–738. https://doi.org/10.1111/j.1365-294X.2006.02813.x

    Article  CAS  PubMed  Google Scholar 

  45. Boss N, Abela E, Weisstanner C, Schindler K, Wiest R (2019) Local thalamic atrophy associates with large-scale functional connectivity alterations of fronto-parietal cortices in genetic generalized epilepsies. Clin Transl Neurosci 3. https://doi.org/10.1177/2514183x19850325

  46. Bernhardt BC, Rozen DA, Worsley KJ, Evans AC, Bernasconi N, Bernasconi A (2009a) Thalamo–cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis. Neuroimage 46:373–381

    Article  PubMed  Google Scholar 

  47. Huang W, Lu G, Zhang Z, Zhong Y, Wang Z, Yuan C, Jiao Q, Qian Z, Tan Q, Chen G (2011) Gray-matter volume reduction in the thalamus and frontal lobe in epileptic patients with generalized tonic-clonic seizures. J Neuroradiol 38:298–303

    Article  PubMed  Google Scholar 

  48. Keller SS, Roberts N (2008) Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia 49:741–757

    Article  PubMed  Google Scholar 

  49. Bonilha L, Rorden C, Castellano G, Pereira F, Rio PA, Cendes F, Li LM (2004) Voxel-based morphometry reveals gray matter network atrophy in refractory medial temporal lobe epilepsy. Arch Neurol 61:1379–1384

    Article  PubMed  Google Scholar 

  50. McDonald CR, Ahmadi ME, Hagler DJ, Tecoma ES, Iragui VJ, Gharapetian L, Dale AM, Halgren E (2008) Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy. Neurology 71:1869–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Farokhian F, Beheshti I, Sone D, Matsuda H (2017) Comparing CAT12 and VBM8 for detecting brain morphological abnormalities in temporal lobe epilepsy. Front Neurol 8:428

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851

    Article  PubMed  Google Scholar 

  53. Beheshti I, Sone D, Farokhian F, Maikusa N, Matsuda H (2018) Gray matter and white matter abnormalities in temporal lobe epilepsy patients with and without hippocampal sclerosis. Front Neurol 9:107

    Article  PubMed  PubMed Central  Google Scholar 

  54. Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE (2006) Statistical parametric mapping: the analysis of functional brain images. First edition.University College London, London, UK : Elsevier, 2006

  55. Jack CR, Jr., Twomey CK, Zinsmeister AR, Sharbrough FW, Petersen RC, Cascino GD(1989) Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults. Radiology 172(2):549–54

  56. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  PubMed  Google Scholar 

  57. Deichmann R, Good CD, Josephs O, Ashburner J, Turner R (2000) Optimization of 3-D MP-RAGE sequences for structural brain imaging. Neuroimage 12:112–127

    Article  CAS  PubMed  Google Scholar 

  58. Park KM, Kim TH, Mun CW, Shin KJ, Ha SY, Park J, Lee BI, Lee H-J, Kim SE (2018) Reduction of ipsilateral thalamic volume in temporal lobe epilepsy with hippocampal sclerosis. J Clin Neurosci 55:76–81

    Article  PubMed  Google Scholar 

  59. Galovic M, Van Dooren VQH, Postma T, Vos SB, Caciagli L, Borzì G, Rosillo JC, Vuong KA, De Tisi J, Nachev P, Duncan JS, Koepp MJ (2019) Progressive cortical thinning in patients with focal epilepsy. JAMA Neurol 76:1–10. https://doi.org/10.1001/jamaneurol.2019.1708

    Article  Google Scholar 

  60. Hong S-J, Bernhardt BC, Schrader DS, Bernasconi N, Bernasconi A (2016) Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy. Neurology 86:643–650

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kamson DO, Pilli VK, Asano E, Jeong J-W, Sood S, Juhász C, Chugani HT (2016) Cortical thickness asymmetries and surgical outcome in neocortical epilepsy. J Neurol Sci 368:97–103

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tang Y, An D, Xiao Y, Niu R, Tong X, Liu W, Zhao L, Gong Q, Zhou D (2019) Cortical thinning in epilepsy patients with postictal generalized electroencephalography suppression. Eur J Neurol 26:191–197. https://doi.org/10.1111/ene.13794

    Article  CAS  PubMed  Google Scholar 

  63. Garcia-Finana M, Denby CE, Keller SS, Wieshmann UC, Roberts N (2006) Degree of hippocampal atrophy is related to side of seizure onset in temporal lobe epilepsy. Am J Neuroradiol 27:1046–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Keller SS, Mackay CE, Barrick TR, Wieshmann UC, Howard MA, Roberts N (2002a) Voxel-based morphometric comparison of hippocampal and extrahippocampal abnormalities in patients with left and right hippocampal atrophy. Neuroimage 16:23–31

    Article  PubMed  Google Scholar 

  65. Keller SS, Wieshmann UC, Mackay CE, Denby CE, Webb J, Roberts N (2002b) Voxel based morphometry of grey matter abnormalities in patients with medically intractable temporal lobe epilepsy: effects of side of seizure onset and epilepsy duration. J Neurol Neurosurg Psychiatry 73:648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mackay CE, Webb JA, Eldridge PR, Chadwick DW, Whitehouse GH, Roberts N (2000) Quantitative magnetic resonance imaging in consecutive patients evaluated for surgical treatment of temporal lobe epilepsy. Magn Reson Imaging 18:1187–1199

    Article  CAS  PubMed  Google Scholar 

  67. Pitkänen A, Salmenperä T, Kälviäinen R, Partanen K (1998) Hippocampal damage caused by seizures in temporal lobe epilepsy. Lancet 351:35

    Article  PubMed  Google Scholar 

  68. Steve TA, Jirsch JD, Gross DW (2014) Quantification of subfield pathology in hippocampal sclerosis: a systematic review and meta-analysis. Epilepsy Res 108:1279–1285

    Article  PubMed  Google Scholar 

  69. Pail M, Brázdil M, Mareček R, Mikl M (2010) An optimized voxel-based morphometric study of gray matter changes in patients with left-sided and right-sided mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE/HS). Epilepsia 51:511–518

    Article  PubMed  Google Scholar 

  70. Ahmadi ME, Hagler DJ, McDonald CR, Tecoma ES, Iragui VJ, Dale AM, Halgren E (2009) Side matters: diffusion tensor imaging tractography in left and right temporal lobe epilepsy. Am J Neuroradiol 30:1740–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bonilha L, Rorden C, Halford JJ, Eckert M, Appenzeller S, Cendes F, Li LM (2007) Asymmetrical extra-hippocampal grey matter loss related to hippocampal atrophy in patients with medial temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 78:286–294

    Article  CAS  PubMed  Google Scholar 

  72. Keller SS, Schoene-Bake J-C, Gerdes JS, Weber B, Deppe M (2012) Concomitant fractional anisotropy and volumetric abnormalities in temporal lobe epilepsy: cross-sectional evidence for progressive neurologic injury. PLoS One 7:e46791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kemmotsu N, Girard HM, Bernhardt BC, Bonilha L, Lin JJ, Tecoma ES, Iragui VJ, Hagler DJJ, Halgren E, McDonald CR (2011) MRI analysis in temporal lobe epilepsy: cortical thinning and white matter disruptions are related to side of seizure onset. Epilepsia 52:2257–2266. https://doi.org/10.1111/j.1528-1167.2011.03278.x

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sanjari Moghaddam H, Rahmani F, Aarabi MH, Nazem-Zadeh MR, Davoodi-Bojd E, Soltanian-Zadeh H(2020) White matter microstructural differences between right and left mesial temporal lobe epilepsy. Acta Neurol Belg 120(6):1323–31

  75. Zheng L, Bin G, Zeng H, Zou D, Gao J, Zhang J, Huang B (2018) Meta-analysis of voxel-based morphometry studies of gray matter abnormalities in patients with mesial temporal lobe epilepsy and unilateral hippocampal sclerosis. Brain Imaging Behav 12:1497–1503

    Article  PubMed  Google Scholar 

  76. Briellmann RS, Labate A, Harvey AS, Saling MM, Sveller C, Lillywhite L, Abbott DF, Jackson GD (2006) Is language lateralization in temporal lobe epilepsy patients related to the nature of the epileptogenic lesion? Epilepsia 47(5):916–920

    Article  PubMed  Google Scholar 

  77. Kuzniecky RI, Bilir E, Gilliam F, Faught E, Palmer C, Morawetz R, Jackson G (1997) Multimodality MRI in mesial temporal sclerosis: relative sensitivity and specificity. Neurology 49:774–778

    Article  CAS  PubMed  Google Scholar 

  78. Cook MJ, Fish DR, Shorvon SD, Straughan K, Stevens JM (1992) Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy. Brain 115:1001–1015

    Article  PubMed  Google Scholar 

  79. Jack CR Jr, Sharbrough FW, Twomey CK, Cascino GD, Hirschorn KA, Marsh WR, Zinsmeister AR, Scheithauer B (1990) Temporal lobe seizures: lateralization with MR volume measurements of the hippocampal formation. Radiology 175:423–429

    Article  PubMed  Google Scholar 

  80. Keihaninejad S, Heckemann RA, Gousias IS, Hajnal JV, Duncan JS, Aljabar P, Rueckert D, Hammers A (2012) Classification and lateralization of temporal lobe epilepsies with and without hippocampal atrophy based on whole-brain automatic MRI segmentation. PLoS One 7

Download references

Acknowledgments

We must acknowledge the contribution of the Iranian National Brain Mapping Lab (NBNL), and their staffs for MRI data acquisition throughout conducting this project.

Funding

This work was partially funded and supported by Iran’s National Elites Foundation, National Institute for Medical Research Development (Grant No. 971683), and Cognitive Sciences & Technologies Council (Grant No. 6431), between 2017 and 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Reza Nazem-Zadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jber, M., Habibabadi, J.M., Sharifpour, R. et al. Temporal and extratemporal atrophic manifestation of temporal lobe epilepsy using voxel-based morphometry and corticometry: clinical application in lateralization of epileptogenic zone. Neurol Sci 42, 3305–3325 (2021). https://doi.org/10.1007/s10072-020-05003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-05003-2

Keywords

Navigation