Skip to main content
Log in

Event-related potential (P300): the effects of levetiracetam in cognitive performance

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

The current study is a reanalysis in the time domain of EEG data collection in healthy adults during an oddball paradigm using levetiracetam (LEV) vs. placebo acute administration. Specifically, the event-related potential (ERP) technique provides a tool for exploring the EEG responses to a specific event/stimulus. One of the ERP components widely studied is the P300 component, which is associated with the last stage of information processing and a general measurement of “cognitive efficiency.”

Methods

The sample was composed of thirteen healthy right-handed individuals randomized to participate under two conditions: LEV and placebo. Electrophysiological measures were collected before and after drug intake. We explored the oddball paradigm, which is commonly used with healthy individuals to investigate the stages of information processing.

Results

The electrophysiological results showed a main effect of condition on P300 amplitude for the frontal (F3, Fz, F4), central (C3, Cz, C4), and parietal electrodes (P3, Pz, P4). The post hoc comparisons (Scheffé’s test) demonstrated the significant differences between electrodes. Regarding P300 latency, all regions represented a main effect of condition. A P300 latency reduction was observed during LEV condition compared with placebo.

Conclusion

Our study observed the ERP component—P300—through the variation of its amplitude and latency to evaluate a supposed higher CNS efficiency when participants were under the LEV effect. Our findings sustain this premise, mainly due to reducing in P300 latency for the LEV condition, supporting the neural efficiency hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lynch G, Cox CD, Gall CM (2014) Pharmacological enhancement of memory or cognition in normal subjects. Front Syst Neurosci 8:90

    Article  Google Scholar 

  2. Woods DL, Kishiyamaa MM, Lund EW, Herron TJ, Edwards B, Poliva O, Hink RF, Reed B (2011) Improving digit span assessment of short-term verbal memory. J Clin Exp Neuropsychol 33(1):101–111

    Article  Google Scholar 

  3. Cortes-Altamirano JL, Olmos-Hernández A, Bonilla-Jaime H, Bandala C, González-Maciel A, Alfaro-Rodríguez A (2016) Levetiracetam as an antiepileptic, neuroprotective, and hyperalgesic drug. Neurol India 64(6):1266–1275

    Article  CAS  Google Scholar 

  4. Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, Yassa MA, Bassett SS, Shelton AL, Gallagher M (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74(3):467–474

    Article  CAS  Google Scholar 

  5. Light GA, Williams LE, Minow F, Sprock J, Rissling A, Sharp R, Swerdlow NR, Braff DL (2010) Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Curr Protoc Neurosci chapter 6:unit 6.25.1-24. https://doi.org/10.1002/0471142301.ns0625s52

    Article  PubMed  Google Scholar 

  6. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    Article  Google Scholar 

  7. Magalhães JC, Gongora M, Vicente R, Bittencourt J, Tanaka G, Velasques B, Teixeira S, Morato G, Basile L, Arias-Carrión O, Pompeu F, Cagy M, Ribeiro P (2015) The influence of levetiracetam in cognitive performance in healthy individuals: neuropsychological, behavioral and electrophysiological approach. Clin Psychopharmacol Neurosci 13(1):83–93

    Article  Google Scholar 

  8. Oldfield R (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  Google Scholar 

  9. Hopkins W, Marshall S, Batterham A, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13

    Article  Google Scholar 

  10. Mecarelli O, Vicenzini E, Pulitano P, Vanacore N, Francesco Saverio Romolo, Piero VD, Lenzi GL, Accornero N (2004) Clinical, cognitive, and neurophysiologic correlates of short-term treatment with carbamazepine, oxcarbazepine, and levetiracetam in healthy volunteers. Ann Pharmacother 38:1816–1822

    Article  CAS  Google Scholar 

  11. Daliento L, Mapelli D, Volpe B (2006) Measurement of cognitive outcome and quality of life in congenital heart disease. Heart 92(4):569–574

    Article  Google Scholar 

  12. Djamshidian A, O'Sullivan SS, Lees A, Averbeck BB (2011) Stroop test performance in impulsive and non impulsive patients with Parkinson's disease. Parkinsonism Relat Disord 17(3):212–214

    Article  Google Scholar 

  13. Davydov DM, Polunina AG (2004) Heroin abusers' performance on the tower of London test relates to the baseline EEG alpha2 mean frequency shifts. Prog Neuro-Psychopharmacol Biol Psychiatry 28:1143–1152

    Article  Google Scholar 

  14. Klem GH, Lüders HO, Jasper HH, Elger C (1999) The ten-twenty electrode system of the international federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:3–6

    CAS  PubMed  Google Scholar 

  15. Iriarte E, Urrestarazu M, Valencia M, Alegre A, Malanda C, Viteri J, Artieda J (2003) Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study. J Clin Neurophysiol 20(4):249–257

    Article  Google Scholar 

  16. Ferreira E, Rocha C, Mequelino B (2012) Monte Carlo evaluation of the ANOVA's F and Kruskal-Wallis tests under binomial distribution. Sigmae. 1(1):126–139

    Google Scholar 

  17. Mena B, José M, Alarcón R, Arnau Gras J, Bono Cabré R, Bendayan R (2017) Non normal data: Is ANOVA still a valid option? Psicothema. 29(4):552–557

    Google Scholar 

  18. Schmider E, Ziegler M, Danay E, Beyer L, Bühner M (2010) Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology. 6:147–151

    Article  Google Scholar 

  19. Meador KJ, Gevins A, Loring DW, McEvoy LK, Ray PG, Smith ME, Motamedi GK, Evans BM, Baum C (2007) Neuropsychological and neurophysiologic effects of carbamazepine and levetiracetam. Neurology 69(22):2076–2084

    Article  CAS  Google Scholar 

  20. Costa A, Oliveri M, Barban F, Bonnì S, Koch G, Caltagirone C, Carlesimo A (2013) The right frontopolar cortex is involved in visual-spatial prospective memory. PLoS One 8(2):e56039

    Article  CAS  Google Scholar 

  21. Farr OM, Zhang S, Hu S, Matuskey D, Abdelghany O, Malison RT, Li CSR (2014) The effects of methylphenidate on resting- state striatal, thalamic and global functional connectivity in healthy adults. Int J Neuropsychopharmacol 17:1177–1191

    Article  CAS  Google Scholar 

  22. Demeter E, Sarter M (2013) Leveraging the cortical cholinergic system to enhance attention. Neuropharmacology 64:294–304

    Article  CAS  Google Scholar 

  23. Lanzilotto M, Perciavalle V, Lucchetti C (2015) Evidence for a functional subdivision of premotor ear-eye field (area 8B). Front Behav Neurosci 8:454

    Article  Google Scholar 

  24. Sur S, Sinha V (2009) Event-related potential: an overview. Ind Psychiatry J 18(1):70–73

    Article  Google Scholar 

  25. Rogawski M (2006) Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res 69(3):273–294

    Article  CAS  Google Scholar 

  26. Tripathi S, Mishra N, Tripathi R, Gurnani K (2015) P300 latency as an indicator of severity in major depressive disorder. Ind Psychiatry J 24(2):163–167

    Article  Google Scholar 

  27. Fond G, Micoulaud-Franchi JA, Brunel L, Macgregor A, Miot S, Lopez R, Richieri R, Abbar M, Lancon C, Repantis D (2015) Innovative mechanisms of action for pharmaceutical cognitive enhancement: a systematic review. Psychiatry Res 229(1–2):12–20

    Article  Google Scholar 

  28. Bensmaia SJ (2015) Biological and bionic hands: natural neural coding and artificial perception. Philos Trans R Soc Lond Ser B Biol Sci 370(1677):20140209

    Article  Google Scholar 

  29. Li Hegner, Y., Lindner, A., Braun, C (2015). Cortical correlates of perceptual decision making during tactile spatial pattern discrimination. Hum Brain Mapp. 36(9): 3339–3350

  30. Mertens R, Polich J (1997a) P300 from a single-stimulus paradigm: passive versus active tasks and stimulus modality. Electroencephalogr Clin Neurophysiol 104:488–497

    Article  CAS  Google Scholar 

  31. Fleming M, Stinear C, Byblow W (2010) Bilateral parietal cortex function during motor imagery. Exp Brain Res 201(3):499–508

    Article  Google Scholar 

  32. Meehan A, Yang X, Yuan L, Rothman S (2012) Levetiracetam has an activity-dependent effect on inhibitory transmission. Epilepsia. 53(3):469–476

    Article  CAS  Google Scholar 

  33. Reep R, Chandler H, King V, Corwin J (1994) Rat posterior parietal cortex: topography of corticocortical and thalamic connections. Exp Brain Res 100:67–68

    Article  CAS  Google Scholar 

  34. Himmelbach M, Nau M, Zündorf I, Erb M, Perenin M, Karnath H (2009) Brain activation during immediate and delayed reaching in optic ataxia. Neuropsychologia. 47:1508–1517

    Article  Google Scholar 

  35. Schultz S, North S, Shields C (2007) Schizophrenia: a review. Am Fam Physician 75:1821–1829

    PubMed  Google Scholar 

  36. Hermens D, Williams L, Clarke S, Kohn M, Cooper N, Gordon E (2005) Responses to methylphenidate in adolescent AD/HD: evidence from concurrently recorded autonomic (EDA) and central (EEG and ERP) measures. Int J Psychophysiol 58(1):21–33

    Article  Google Scholar 

  37. Donchin E (1979) Event-related brain potentials: a tool in the study of human information processing. In: Begleiter H (ed) Evoked potentials and behavior. Plenum, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Nicoliche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest for this research and this paper.

Ethical approval

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gongora, M., Nicoliche, E., Magalhães, J. et al. Event-related potential (P300): the effects of levetiracetam in cognitive performance. Neurol Sci 42, 2309–2316 (2021). https://doi.org/10.1007/s10072-020-04786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04786-8

Keywords

Navigation