Skip to main content

Age-related assessment of diffusion parameters in specific brain tracts correlated with cortical thinning

Abstract

The aging process is associated with many brain structural alterations. These changes are not associated with neuronal loss but can be due to cortical structural changes that may be related to white matter (WM) structural alterations. In this study, we evaluated age-related changes in WM and gray matter (GM) parameters and how they correlate for specific brain tracts in a cohort of 158 healthy individuals, aged between 18 and 83 years old. In the tract-cortical analysis, cortical regions connected by tracts demonstrated similar thinning patterns for the majority of tracts. Additionally, a significant relationship was found between mean cortical thinning rate with fractional anisotropy (FA) and mean diffusivity (MD) alteration rates. For all tracts, age was the main effect controlling diffusion parameter alterations. We found no direct correlations between cortical thickness and FA or MD, except for in the fornix, for which the subcallosal gyrus thickness was significantly correlated to FA and MD (p < 0.05 FDR corrected). Our findings lead to the conclusion that alterations in the WM diffusion parameters are explained by the aging process, also associated with cortical thickness changes. Also, the alteration rates of the structural parameters are correlated to the different brain tracts in the aging process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C (2012) Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60:340–352. https://doi.org/10.1016/j.neuroimage.2011.11.094

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Yeatman JD, Wandell BA, Mezer AA (2014) Lifespan maturation and degeneration of human brain white matter. Nat Commun 5:1–12. https://doi.org/10.1038/ncomms5932

    CAS  Article  Google Scholar 

  3. 3.

    Vieira BH, Rondinoni C, Garrido Salmon CE (2020) Evidence of regional associations between age-related inter-individual differences in resting-state functional connectivity and cortical thinning revealed through a multi-level analysis. NeuroImage 211:116662. https://doi.org/10.1016/j.neuroimage.2020.116662

    Article  PubMed  Google Scholar 

  4. 4.

    Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RSR, Busa E, Morris JC, Dale AM, Fischl B (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14:721–730. https://doi.org/10.1093/cercor/bhh032

    Article  PubMed  Google Scholar 

  5. 5.

    Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Walhovd KB (2009) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 19:2001–2012. https://doi.org/10.1093/cercor/bhn232

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Freeman SH, Kandel R, Cruz L, Rozkalne A, Newell K, Frosch MP, Hedley-Whyte ET, Locascio JJ, Lipsitz LA, Hyman BT (2008) Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. J Neuropathol Exp Neurol 67:1205–1212. https://doi.org/10.1097/NEN.0b013e31818fc72f

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U (2010) Trajectories of brain aging in middle-aged and older adults: regional and individual differences. Neuroimage 51:501–511. https://doi.org/10.1016/j.neuroimage.2010.03.020

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267. https://doi.org/10.1016/S0006-3495(94)80775-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546. https://doi.org/10.1002/jmri.1076

    Article  PubMed  Google Scholar 

  10. 10.

    Salat DH, Tuch DS, Greve DN, Van Der Kouwe AJW, Hevelone ND, Zaleta AK, Rosen BR, Fischl B, Corkin S, Diana Rosas H, Dale AM (2005) Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 26:1215–1227. https://doi.org/10.1016/j.neurobiolaging.2004.09.017

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Sullivan EV, Adalsteinsson E, Hedehus M, Ju C, Moseley M, Lim KO, Pfefferbaum A (2001) Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport 12(1):99–104. https://doi.org/10.1097/00001756-200101220-00027

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Sullivan EV, Pfefferbaum A (2006) Diffusion tensor imaging and aging. Neurosci Biobehav Rev 30:749–761. https://doi.org/10.1016/j.neubiorev.2006.06.002

    Article  PubMed  Google Scholar 

  13. 13.

    Marner L, Nyengaard JR, Tang Y, Pakkenberg B (2003) Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 462:144–152. https://doi.org/10.1002/cne.10714

    Article  PubMed  Google Scholar 

  14. 14.

    Gunning-Dixon FM, Brickman AM, Cheng JC, Alexopoulos GS (2009) Aging of cerebral white matter: a review of MRI findings. Int J Geriatr Psychiatry 24:109–117. https://doi.org/10.1002/gps.2087

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lebel C, Caverhill-Godkewitsch S, Beaulieu C (2010) Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. Neuroimage 52:20–31. https://doi.org/10.1016/j.neuroimage.2010.03.072

    Article  PubMed  Google Scholar 

  16. 16.

    Michielse S, Coupland N, Camicioli R, Carter R, Seres P, Sabino J, Malykhin N (2010) Selective effects of aging on brain white matter microstructure: a diffusion tensor imaging tractography study. Neuroimage 52:1190–1201. https://doi.org/10.1016/j.neuroimage.2010.05.019

    Article  PubMed  Google Scholar 

  17. 17.

    Teipel SJ, Lerche M, Kilimann I, O’Brien K, Grothe M, Meyer P, Li X, Sänger P, Hauenstein K (2014) Decline of fiber tract integrity over the adult age range: a diffusion spectrum imaging study. J Magn Reson Imaging 40:348–359. https://doi.org/10.1002/jmri.24420

    Article  PubMed  Google Scholar 

  18. 18.

    Voineskos AN, Rajji TK, Lobaugh NJ, Miranda D, Shenton ME, Kennedy JL, Pollock BG, Mulsant BH (2012) Age-related decline in white matter tract integrity and cognitive performance: a DTI tractography and structural equation modeling study. Neurobiol Aging 33:21–34. https://doi.org/10.1016/j.neurobiolaging.2010.02.009

    Article  PubMed  Google Scholar 

  19. 19.

    Hasan KM, Iftikhar A, Kamali A, Kramer LA, Ashtari M, Cirino PT, Papanicolaou AC, Fletcher JM, Ewing-Cobbs L (2009) Development and aging of the healthy human brain uncinate fasciculus across the lifespan using diffusion tensor tractography. Brain Res 1276:67–76. https://doi.org/10.1016/j.brainres.2009.04.025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Malykhin N, Concha L, Seres P, Beaulieu C, Coupland NJ (2008) Diffusion tensor imaging tractography and reliability analysis for limbic and paralimbic white matter tracts. Psychiatry Res Neuroimaging 164:132–142. https://doi.org/10.1016/j.pscychresns.2007.11.007

    Article  Google Scholar 

  21. 21.

    Metzler-Baddeley C, Jones DK, Belaroussi B, Aggleton JP, O’Sullivan MJ (2011) Frontotemporal connections in episodic memory and aging: a diffusion MRI tractography study. J Neurosci 31:13236–13245. https://doi.org/10.1523/JNEUROSCI.2317-11.2011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Nusbaum AO, Tang CY, Buchsbaum MS, Wei TC, Atlas SW (2001) Regional and global changes in cerebral diffusion with normal aging. AJNR Am J Neuroradiol 22:136–142

    CAS  PubMed  Google Scholar 

  23. 23.

    Jang SH, Seo JP (2015) Aging of corticospinal tract fibers according to the cerebral origin in the human brain: a diffusion tensor imaging study. Neurosci Lett 585:77–81. https://doi.org/10.1016/j.neulet.2014.11.030

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Tang PF, Ko YH, Luo ZA, Yeh FC, Chen SHA, Tseng WYI (2010) Tract-specific and region of interest analysis of corticospinal tract integrity in subcortical ischemic stroke: reliability and correlation with motor function of affected lower extremity. Am J Neuroradiol 31:1023–1030. https://doi.org/10.3174/ajnr.A1981

    Article  PubMed  Google Scholar 

  25. 25.

    Jang SH, Cho S-H, Chang MC (2011) Age-related degeneration of the fornix in the human brain: a diffusion tensor imaging study. Int J Neurosci 121:94–100. https://doi.org/10.3109/00207454.2010.531894

    Article  PubMed  Google Scholar 

  26. 26.

    Bender AR, Volkle MC, Raz N (2016) Differential aging of cerebral white matter in middle-aged and older adults: a seven-year follow-up. Neuroimage 125:74–83. https://doi.org/10.1016/j.neuroimage.2015.10.030

    Article  PubMed  Google Scholar 

  27. 27.

    Wang D, Luo Y, Mok VCT, Chu WCW, Shi L (2016) Tractography atlas-based spatial statistics: statistical analysis of diffusion tensor image along fiber pathways. Neuroimage 125:301–310. https://doi.org/10.1016/j.neuroimage.2015.10.032

    Article  PubMed  Google Scholar 

  28. 28.

    Bennett IJ, Madden DJ, Vaidya CJ, Howard DV, Howard JH (2010) Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging. Hum Brain Mapp 31:378–390. https://doi.org/10.1002/hbm.20872

    Article  PubMed  Google Scholar 

  29. 29.

    Burzynska AZ, Preuschhof C, Bäckman L, Nyberg L, Li SC, Lindenberger U, Heekeren HR (2010) Age-related differences in white matter microstructure: region-specific patterns of diffusivity. Neuroimage 49:2104–2112. https://doi.org/10.1016/j.neuroimage.2009.09.041

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, De Stefano N, Johansen-Berg H (2010) Age-related changes in grey and white matter structure throughout adulthood. Neuroimage 51:943–951. https://doi.org/10.1016/j.neuroimage.2010.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hugenschmidt CE, Peiffer AM, Kraft RA, Casanova R, Deibler AR, Burdette JH, Maldjian JA, Laurienti PJ (2008) Relating imaging indices of white matter integrity and volume in healthy older adults. Cereb Cortex 18:433–442. https://doi.org/10.1093/cercor/bhm080

    Article  PubMed  Google Scholar 

  32. 32.

    De Stefano N, Matthews PM, Filippi M, Agosta F, De Luca M, Bartolozzi ML, Guidi L, Ghezzi A, Montanari E, Cifelli A, Federico A, Smith SM (2003) Evidence of early cortical atrophy in MS: Relevance to white matter changes and disability. Neurology 60:1157–1162. https://doi.org/10.1212/01.WNL.0000055926.69643.03

    Article  PubMed  Google Scholar 

  33. 33.

    Waller A (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philos Trans R Soc Lond A 140:423–429. https://doi.org/10.1098/rstl.1850.0021

    Article  Google Scholar 

  34. 34.

    Brickman AM, Habeck C, Zarahn E, Flynn J, Stern Y (2007) Structural MRI covariance patterns associated with normal aging and neuropsychological functioning. Neurobiol Aging 28(2):284–295. https://doi.org/10.1016/j.neurobiolaging.2005.12.016

    Article  PubMed  Google Scholar 

  35. 35.

    Kochunov P, Glahn DC, Lancaster J, Thompson PM, Kochunov V, Rogers B, Fox P, Blangero J, Williamson DE (2011) Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. Neuroimage 58:41–49. https://doi.org/10.1016/j.neuroimage.2011.05.050

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Grieve SM, Korgaonkar MS, Clark CR, Williams LM (2011) Regional heterogeneity in limbic maturational changes: evidence from integrating cortical thickness, volumetric and diffusion tensor imaging measures. Neuroimage 55:868–879. https://doi.org/10.1016/j.neuroimage.2010.12.087

    Article  PubMed  Google Scholar 

  37. 37.

    Storsve AB, Fjell AM, Yendiki A, Walhovd KB (2016) Longitudinal changes in white matter tract integrity across the adult lifespan and its relation to cortical thinning. PLoS One 11:1–21. https://doi.org/10.1371/journal.pone.0156770

    CAS  Article  Google Scholar 

  38. 38.

    Hoagey DA, Rieck JR, Rodrigue KM, Kennedy KM (2019) Joint contributions of cortical morphometry and white matter microstructure in healthy brain aging: a partial least squares correlation analysis. Hum Brain Mapp 40(18):5315–5329. https://doi.org/10.1002/hbm.24774

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Fischl B (2012) FreeSurfer. Neuroimage 2(62):774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021.FreeSurfer

    Article  Google Scholar 

  40. 40.

    Fischl B, Van Der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22. https://doi.org/10.1093/cercor/bhg087

    Article  PubMed  Google Scholar 

  41. 41.

    Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62:782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015

    Article  PubMed  Google Scholar 

  42. 42.

    Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48(1):63–72. https://doi.org/10.1016/j.neuroimage.2009.06.060

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Andersson JLR, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125:1063–1078. https://doi.org/10.1016/j.neuroimage.2015.10.019

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155. https://doi.org/10.1002/hbm.10062

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Wang R, Benner T, Sorensen AG, Wedeen VJ (2007) Diffusion Toolkit: a software package for diffusion imaging data processing and tractography. Proc Intl Soc Mag Reson Med 15:3720

    Google Scholar 

  46. 46.

    Mori S, Crain BJ, Chacko VP, Van Zijl PCM (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269. https://doi.org/10.1002/1531-8249(199902)45:2<265::aid-ana21>3.0.co;2-3

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300. https://doi.org/10.2307/2346101

    Article  Google Scholar 

  48. 48.

    Sullivan EV, Pfefferbaum A (2007) Neuroradiological characterization of normal adult ageing. Br J Radiol 80:S99–S108. https://doi.org/10.1259/bjr/22893432

    Article  PubMed  Google Scholar 

  49. 49.

    Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, Mattay VS (2012) Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging 33:617.e1–617.e9. https://doi.org/10.1016/j.neurobiolaging.2010.07.013

    Article  Google Scholar 

  50. 50.

    Thambisetty M, Wan J, Carass A, An Y, Prince JL, Resnick SM (2010) Longitudinal changes in cortical thickness associated with normal aging. Neuroimage 52:1215–1223. https://doi.org/10.1016/j.neuroimage.2010.04.258

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Yasmin H, Aoki S, Abe O, Nakata Y, Hayashi N, Masutani Y, Goto M, Ohtomo K (2009) Tract-specific analysis of white matter pathways in healthy subjects: a pilot study using diffusion tensor MRI. Neuroradiology 51:831–840. https://doi.org/10.1007/s00234-009-0580-1

    Article  PubMed  Google Scholar 

  52. 52.

    Winston GP (2012) The physical and biological basis of quantitative parameters derived from diffusion. MRI 2:254–265. https://doi.org/10.3978/j.issn.2223-4292.2012.12.05

    Article  Google Scholar 

  53. 53.

    Park HJ, Jae JK, Lee SK, Jeong HS, Chun J, Dong IK, Jong DL (2008) Corpus callosal connection mapping using cortical gray matter panellation and DT-MRI. Hum Brain Mapp 29:503–516. https://doi.org/10.1002/hbm.20314

    Article  PubMed  Google Scholar 

  54. 54.

    Raz N (2000) Aging of the brain and its impact on cognitive performance: integration of structural and functional findings. BT - Handb Aging Cogn 2:1–90

    Google Scholar 

Download references

Acknowledgments

Data was provided from the Center of Image Sciences and Medical Physics, in the Faculty of Medicine of Ribeirao Preto, University of Sao Paulo (CCIFM/HC-FMRP), with the approval of the Radiology Department head.

This work was presented in part at the ISMRM Meeting in Honolulu, April 2017, and at the OHBM Meeting in Vancouver, June 2017.

Funding

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant number 2015/26227-7. CEGS received financial support from the CNPq (National Council for Scientific and Technological Development), grant number 311703/2014-3.

Author information

Affiliations

Authors

Contributions

MSP wrote the manuscript with comments from CEGS and ACS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maíra Siqueira Pinto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The use of the retrospective data was approved by the local Research Ethics Committee (CAAE: 55268616.3.3001.5440 and 55268616.3.0000.5407). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the respective studies.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

MOESM1

(2.85 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinto, M.S., dos Santos, A.C. & Salmon, C.E.G. Age-related assessment of diffusion parameters in specific brain tracts correlated with cortical thinning. Neurol Sci 42, 1799–1809 (2021). https://doi.org/10.1007/s10072-020-04688-9

Download citation

Keywords

  • Aging
  • Diffusion MRI
  • Structural connectivity
  • Cortical thickness
  • Tractography