Skip to main content

Advertisement

Log in

Microglia is associated with p-Tau aggregates in the olfactory bulb of patients with neurodegenerative diseases

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The olfactory bulb (OB) seems to be the first affected structure in neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Lewy body dementia (LBD). Deposits of protein aggregates, increased dopaminergic neurons, and decreased cholinergic inputs have all been described in the OB of these diseases. We investigated here the contribution of the activated microglial cells to the increased deposits of protein aggregates. We quantified the number of activated microglial cells and astrocytes in the OB of patients with histological diagnosis of PD (n = 5), AD (n = 13), and LBD (n = 7) and aged-matched controls (n = 8). Specific consensus diagnostic criteria were applied for AD, LBD, and PD. Protein aggregates were scored in the OB as grade 0, none; grade 1, mild; grade 2, moderate; and grade 3, severe. OB sections from the 33 subjects were stained with specific antibodies markers for reactive astrocytes (GFAP) and microglial cells (Iba1 and HLA-DR). The total number of Iba1-ir (Iba-immunoreactive) and HLAD-DR cells was estimated by stereological analysis, while quantification of astrocytes was performed by GFAP optical density. Statistical analysis was done using the Stata 12.0 software. The number of microglia and activated microglia cells (HLA-RD-ir) was increased in patients with neurodegenerative diseases (p < 0.05). Moreover, the density of GFAP-ir cells was higher in the OB of patients. Neither the number of microglia cells nor the density of astrocytes correlated with the number of b-amyloid and alpha-synuclein deposits, but the density of Iba1-ir cells correlated with the number of p-Tau aggregates. Activated microglial cells and reactive astrocytes are present in the OB of patients with neurodegenerative diseases. The lack of correlation between the number of activated microglia cells and protein deposits indicate that they might independently contribute to the degenerative process. The presence of microglia is related to phosphorylated Tau deposits in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Aisen PS (1996) Inflammation and Alzheimer disease. Mol Chem Neuropathol 28:83–88

    Article  CAS  PubMed  Google Scholar 

  2. Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM (2014) Inflammation in neurodegenerative diseases--an update. Immunology 142:151–166. https://doi.org/10.1111/imm.12233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Attems J, Jellinger KA (2006) Olfactory tau pathology in Alzheimer disease and mild cognitive impairment. Clin Neuropathol 25:265–271

    CAS  PubMed  Google Scholar 

  4. Belzunegui S, San Sebastian W, Garrido-Gil P, Izal-Azcarate A, Vazquez-Claverie M, Lopez B, Marcilla I, Lanciego JL, Luquin MR (2007) The number of dopaminergic cells is increased in the olfactory bulb of monkeys chronically exposed to MPTP. Synapse 61:1006–1012

    Article  CAS  PubMed  Google Scholar 

  5. Berendse HW, Booij J, Francot CM, Bergmans PL, Hijman R, Stoof JC, Wolters EC (2001) Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with a decreased sense of smell. Ann Neurol 50:34–41

    Article  CAS  PubMed  Google Scholar 

  6. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rub U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249 Suppl: III/1-5

  7. Christen-Zaech S, Kraftsik R, Pillevuit O, Kiraly M, Martins R, Khalili K, Miklossy J (2003) Early olfactory involvement in Alzheimer’s disease. Can J Neurol Sci 30:20–25

    Article  CAS  PubMed  Google Scholar 

  8. Dexter DT, Sian J, Rose S, Hindmarsh JG, Mann VM, Cooper JM, Wells FR, Daniel SE, Lees AJ, Schapira AH et al (1994) Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol 35:38–44

    Article  CAS  PubMed  Google Scholar 

  9. Djordjevic J, Jones-Gotman M, De Sousa K, Chertkow H (2008) Olfaction in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 29:693–706

    Article  PubMed  Google Scholar 

  10. Doorn KJ, Goudriaan A, Blits-Huizinga C, Bol JG, Rozemuller AJ, Hoogland PV, Lucassen PJ, Drukarch B, van de Berg WD, van Dam AM (2014) Increased amoeboid microglial density in the olfactory bulb of Parkinson’s and Alzheimer’s patients. Brain Pathol 24:152–165. https://doi.org/10.1111/bpa.12088

    Article  CAS  PubMed  Google Scholar 

  11. Doty RL, Shaman P, Applebaum SL, Giberson R, Siksorski L, Rosenberg L (1984) Smell identification ability: changes with age. Science 226:1441–1443

    Article  CAS  PubMed  Google Scholar 

  12. Duda JE (2010) Olfactory system pathology as a model of Lewy neurodegenerative disease. J Neurol Sci 289:49–54. https://doi.org/10.1016/j.jns.2009.08.042 Epub 2009 Sep 23

    Article  CAS  PubMed  Google Scholar 

  13. Fukumoto H, Asami-Odaka A, Suzuki N, Iwatsubo T (1996) Association of A beta 40-positive senile plaques with microglial cells in the brains of patients with Alzheimer’s disease and in non-demented aged individuals. Neurodegeneration 5:13–17

    Article  CAS  PubMed  Google Scholar 

  14. Fusetti M, Fioretti AB, Silvagni F, Simaskou M, Sucapane P, Necozione S, Eibenstein A (2010) Smell and preclinical Alzheimer disease: study of 29 patients with amnesic mild cognitive impairment. J Otolaryngol Head Neck Surg 39:175–181

    PubMed  Google Scholar 

  15. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934. https://doi.org/10.1016/j.cell.2010.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B et al (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Apmis 96:857–881

    Article  CAS  PubMed  Google Scholar 

  17. Gundersen HJ, Bendtsen TF, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB, Vesterby A et al (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Apmis 96:379–394

    Article  CAS  PubMed  Google Scholar 

  18. Hawkes C (2003) Olfaction in neurodegenerative disorder. Mov Disord 18:364–372

    Article  PubMed  Google Scholar 

  19. Hirsch EC, Hunot S, Damier P, Faucheux B (1998) Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol 44:S115–S120

    Article  CAS  PubMed  Google Scholar 

  20. Hirsch EC, Jenner P, Przedborski S (2013) Pathogenesis of Parkinson’s disease. Mov Disord 28:24–30. https://doi.org/10.1002/mds.25032

    Article  CAS  PubMed  Google Scholar 

  21. Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S210–S212. https://doi.org/10.1016/S1353-8020(11)

    Article  PubMed  Google Scholar 

  22. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huisman E, Uylings HB, Hoogland PV (2004) A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Mov Disord 19:687–692

    Article  PubMed  Google Scholar 

  24. Huisman E, Uylings HB, Hoogland PV (2008) Gender-related changes in increase of dopaminergic neurons in the olfactory bulb of Parkinson's disease patients. Mov Disord 23:1407–1413. https://doi.org/10.1002/mds.22009

    Article  PubMed  Google Scholar 

  25. Imai Y, Kohsaka S (2002) Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia 40:164–174

    Article  PubMed  Google Scholar 

  26. Inagaki H, Gondo Y, Hirose N, Masui Y, Kitagawa K, Arai Y, Ebihara Y, Yamamura K, Takayama M, Nakazawa S et al (2009) Cognitive function in Japanese centenarians according to the mini-mental state examination. Dement Geriatr Cogn Disord 28:6–12. https://doi.org/10.1159/000228713

    Article  PubMed  Google Scholar 

  27. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9

    Article  CAS  PubMed  Google Scholar 

  28. Kovacs T (2004) Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res Rev 3:215–232

    Article  PubMed  Google Scholar 

  29. Kraft AW, Hu X, Yoon H, Yan P, Xiao Q, Wang Y, Gil SC, Brown J, Wilhelmsson U, Restivo JL et al (2013) Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J 27:187–198. https://doi.org/10.1096/fj.12-208660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee DC, Rizer J, Hunt JB, Selenica ML, Gordon MN, Morgan D (2013) Review: experimental manipulations of microglia in mouse models of Alzheimer’s pathology: activation reduces amyloid but hastens tau pathology. Neuropathol Appl Neurobiol 39:69–85. https://doi.org/10.1111/nan.12002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Liu L, Barger SW, Griffin WS (2003) Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 23:1605–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McGeer EG, McGeer PL (1998) The importance of inflammatory mechanisms in Alzheimer disease. Exp Gerontol 33:371–378

    Article  CAS  PubMed  Google Scholar 

  33. McGeer PL, McGeer EG (2004) Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 1035:104–116

    Article  CAS  PubMed  Google Scholar 

  34. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    Article  CAS  PubMed  Google Scholar 

  35. Mundinano IC, Caballero MC, Ordonez C, Hernandez M, DiCaudo C, Marcilla I, Erro ME, Tunon MT, Luquin MR (2011) Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol 122:61–74. https://doi.org/10.1007/s00401-011-0830-2

    Article  CAS  PubMed  Google Scholar 

  36. Mundinano IC, Hernandez M, Dicaudo C, Ordonez C, Marcilla I, Tunon MT, Luquin MR (2013) Reduced cholinergic olfactory centrifugal inputs in patients with neurodegenerative disorders and MPTP-treated monkeys. Acta Neuropathol 126:411–425. https://doi.org/10.1007/s00401-013-1144-3

    Article  CAS  PubMed  Google Scholar 

  37. Ohgami T, Kitamoto T, Shin RW, Kaneko Y, Ogomori K, Tateishi J (1991) Increased senile plaques without microglia in Alzheimer’s disease. Acta Neuropathol 81:242–247

    Article  CAS  PubMed  Google Scholar 

  38. Pike CJ, Cummings BJ, Cotman CW (1995) Early association of reactive astrocytes with senile plaques in Alzheimer’s disease. Exp Neurol 132:172–179

    Article  CAS  PubMed  Google Scholar 

  39. Ponsen MM, Stoffers D, Booij J, van Eck-Smit BL, Wolters E, Berendse HW (2004) Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol 56:173–181

    Article  PubMed  Google Scholar 

  40. Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9:339–349

    Article  CAS  PubMed  Google Scholar 

  41. Ross GW, Petrovitch H, Abbott RD, Tanner CM, Popper J, Masaki K, Launer L, White LR (2008) Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol 63:167–173

    Article  PubMed  Google Scholar 

  42. Sheng JG, Mrak RE, Griffin WS (1997) Neuritic plaque evolution in Alzheimer’s disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms. Acta Neuropathol 94:1–5

    Article  CAS  PubMed  Google Scholar 

  43. Stephenson R, Siderowf A, Stern MB (2009) Premotor Parkinson’s disease: clinical features and detection strategies. Mov Disord 24(Suppl 2):S665–S670. https://doi.org/10.1002/mds.22403

    Article  PubMed  Google Scholar 

  44. Vehmas AK, Kawas CH, Stewart WF, Troncoso JC (2003) Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging 24:321–331

    Article  PubMed  Google Scholar 

  45. Vroon A, Drukarch B, Bol JG, Cras P, Breve JJ, Allan SM, Relton JK, Hoogland PV, Van Dam AM (2007) Neuroinflammation in Parkinson’s patients and MPTP-treated mice is not restricted to the nigrostriatal system: microgliosis and differential expression of interleukin-1 receptors in the olfactory bulb. Exp Gerontol 42:762–771

    Article  CAS  PubMed  Google Scholar 

  46. Williams SS, Williams J, Combrinck M, Christie S, Smith AD, McShane R (2009) Olfactory impairment is more marked in patients with mild dementia with Lewy bodies than those with mild Alzheimer disease. J Neurol Neurosurg Psychiatry 80:667–670. https://doi.org/10.1136/jnnp.2008.155895

    Article  CAS  PubMed  Google Scholar 

  47. Wilson RS, Arnold SE, Schneider JA, Boyle PA, Buchman AS, Bennett DA (2009) Olfactory impairment in presymptomatic Alzheimer’s disease. Ann N Y Acad Sci 1170:730–735. https://doi.org/10.1111/j.1749-6632.2009.04013.x

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wisniewski HM, Wegiel J (1991) Spatial relationships between astrocytes and classical plaque components. Neurobiol Aging 12:593–600

    Article  CAS  PubMed  Google Scholar 

  49. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this article appeared in Movement Disorders List of abstracts 2014, titled “Inflammatory process in the olfactory bulb of patients with neurodegenerative disorders is not associated with the intensity of protein aggregates published.”

Author information

Authors and Affiliations

Authors

Contributions

MC, RL, and CD designed the study; IM and CD performed immunohistochemistry; MC, IM, and IG processed samples; MC and JN performed statistical analysis and created the figures and tables; IM, IG, and RL interpreted the results of the analysis with subsequent substantial contributions from all the co-authors. MC, IM, and RL drafted the manuscript, to which all the authors contributed with revisions and approved the final version.

Corresponding author

Correspondence to Mar Carmona-Abellan.

Ethics declarations

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of interest

None.

Ethical approval

Written informed consent was obteined for all the subjects.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmona-Abellan, M., Martinez-Valbuena, I., Marcilla, I. et al. Microglia is associated with p-Tau aggregates in the olfactory bulb of patients with neurodegenerative diseases. Neurol Sci 42, 1473–1482 (2021). https://doi.org/10.1007/s10072-020-04686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04686-x

Keywords

Navigation