Skip to main content

Advertisement

Log in

A waves in electroneurography: differential diagnosis with other late responses

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Neurographic studies are an extension of clinical examination and are performed for the functional assessment of peripheral nerves. The study of motor and sensory conduction velocity and the presence, amplitude, morphology and symmetry of the response to electrical stimulation are crucial for the diagnosis and management of peripheral neuromuscular disorders. Neurography also plays an important role in the search for so-called late responses comprising the F wave, H reflex, axonal response and A wave. By analysing the parameters of each late wave, this paper addresses the pathophysiological features and the most common conditions impairing the physiology of late responses, with a special focus on A waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bischoff C (2002) Neurography: late responses. Muscle Nerve 25(Suppl. 11):S59–S65. https://doi.org/10.1002/mus.10149

    Article  Google Scholar 

  2. Trontelj JV (1973) A study of the F response by single fiber electromyography. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology. Karger, Basel, pp 318–322

    Google Scholar 

  3. Eisen A, Fisher M (1999) Recommendations for the practice of clinical neurophysiology: guidelines of the International Federation of Clinical Physiology (EEG Suppl. 52) Deuschl G, Eisen A (eds) A International Federation of Clinical Neurophysiology 6.3: 255–7

  4. Magladery JW, McDougal DB, Stoll J (1950) Electrophysiological studies of nerve and reflex activity in normal man. II the effects of peripheral ischemia. Bull Johns Hopkins Hosp 86:291–312

    CAS  PubMed  Google Scholar 

  5. Yates SK, Brown WF (1979) Characteristics of the F response: a single motor unit study. J Neurol Neurosurg Psychiatry 42:161–170

    Article  CAS  Google Scholar 

  6. Fisher MA (2002) H reflexes and F waves. Fundamentals, normal and abnormal patterns. Neurol Clin N Am 20:339–360

    Article  Google Scholar 

  7. Panayiotopoulos CP (1979) F chronodispersion: a new electrophysiologic method. Muscle Nerve 2:68–72

    Article  CAS  Google Scholar 

  8. Fisher MA (1982) F response latency determination. Muscle Nerve 5:730–734

    Article  Google Scholar 

  9. Peioglou-Harmoussi S, Fawcett PRW, Howell D, Barwick DB (1985) F-responses: a study of frequency, shape and amplitude characteristics in healthy control subjects. J Neurol Neurosurg Psychiatry 48:1159–1164

    Article  CAS  Google Scholar 

  10. Zappia M, Valentino P, Marchello LP, Paciccia M, Montagna P (1993) F-wave normative studies in different nerves of healthy subjects. Electroencephalogr Clin Neurophysiol 89:67–72

    Article  CAS  Google Scholar 

  11. Panayiotopoulos CP, Chroni E (1996) F-waves in clinical neurophysiology: a review, methodological issues and overall value in peripheral neuropathies. Electroencephalogr Clin Neurophysiol 101:365–374

    Article  CAS  Google Scholar 

  12. Feasby TE, Brown WF (1974) Variation of motor unit size in the human extensor digitorum brevis and thenar muscles. J Neurol Neurosurg Psychiatry 37:916–926

    Article  CAS  Google Scholar 

  13. Puksa L, Stålberg E, Falck B (2003) Reference values of F wave parameters in healthy subjects. Clin Neurophysiol 114(6):1079–1090

    Article  Google Scholar 

  14. Olney RK, Aminoff MJ (1990) Electrodiagnostic features of the Guillain-Barré syndrome: the relative sensitivity of different techniques. Neurology 40:471–475

    Article  CAS  Google Scholar 

  15. Fox JE, Hitchcock ER (1987) F wave size as a monitor of motor neuron excitability: the effect of deafferentation. J Neurol Neurosurg Psychiatry 50:453–459

    Article  CAS  Google Scholar 

  16. D’Amour ML, Shahani BT, Young RR, Bird KT (1979) The importance of studying sural nerve conduction and late responses in the evaluation of alcoholic subjects. Neurology 29:1600–1604

    Article  Google Scholar 

  17. Kiers L, Clouston P, Zuniga G, Cros D (1994) Quantitative studies of F responses in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. Electroencephalogr Clin Neurophysiol 93:255–264

    Article  CAS  Google Scholar 

  18. Lachman T, Shahani BT, Young RR (1980) Late responses as aids to diagnosis in peripheral neuropathy. J Neurol Neurosurg Psychiatry 43:156–162

    Article  CAS  Google Scholar 

  19. Toyokura M, Murakami K (1997) F-wave study in patients with lumbosacral radiculopathies. Electromyogr Clin Neurophysiol 37:19–26

    CAS  PubMed  Google Scholar 

  20. Jusić A, Baraba R, Bogunović (1995) A H-reflex and F-wave potentials in leg and arm muscles. Electromyogr Clin Neurophysiol 35:471–478

    PubMed  Google Scholar 

  21. Ackil AA, Shahani BT, Young RR, Rubin NE (1981) Late response and sural conduction studies. Usefulness in patients with chronic renal failure. Arch Neurol 38:482–485

    Article  CAS  Google Scholar 

  22. Kimura J, Butzer JF (1975) F-wave conduction velocity in Guillain-Barré syndrome. Assessment of nerve segment between axilla and spinal cord. Arch Neurol 32:524–529

    Article  CAS  Google Scholar 

  23. Fraser JL, Olney RK (1991) The relative diagnostic sensitivity of different F wave parameters in various neuropathies. Muscle Nerve 14:912–913

    Google Scholar 

  24. Peioglou-Harmoussi S, Fawcett PRW, Howel D, Barwick DD (1987) F-response frequency in motor neuron disease and cervical spondylosis. J Neurol Neurosurg Psychiatry 50:593–559

    Article  CAS  Google Scholar 

  25. Petajan JH (1985) F-waves in neurogenic atrophy. Muscle Nerve 18:690–696

    Article  Google Scholar 

  26. Argyropoulos CJ, Panayiotopoulos CP, Scarpalezos SF (1978) M-wave conduction in amyotrophic lateral sclerosis. Muscle Nerve 1:479–485

    Article  CAS  Google Scholar 

  27. Chroni E (1994) F chronodispersion and F tacheodispersion: a study of conduction properties of motor nerve fibers in normal and pathological conditions. PhD Thesis. University of London,

  28. Rivner MH (1998) The contemporary role of F-wave studies. F wave studies: limitations. Muscle Nerve 21:1001–1104

    Google Scholar 

  29. Wilbourn AJ, Aminoff MJ (1998) The electrodiagnostic examination in patients with radiculopathies. Muscle Nerve 21:1621–1631

    Article  Google Scholar 

  30. Tang LM, Schwartz MS, Swash M (1980) Postural effects on F wave parameters in lumbosacral root compression and canal stenosis. Brain 111:207–213

    Article  Google Scholar 

  31. Fisher MA (1986) F response latencies and durations in upper motor syndromes. Electromyogr Clin Neurophysiol 26:327–332

    CAS  PubMed  Google Scholar 

  32. Schiller HH, Stalberg E (1978) F responses studied with single fibre EMG in normal subjects and spastic patients. J Neurol Neurosurg Psychiatry 41:45–53

    Article  CAS  Google Scholar 

  33. Ricci L, Luigetti M, Florio L, Capone F, di Lazzaro V (2019) Causes of chronic neuropathies: a single-center experience. Neurol Sci 40:1611–1617. https://doi.org/10.1007/s10072-019-03899-z

    Article  PubMed  Google Scholar 

  34. Luigetti M, Servidei S, Modoni A, Rossini PM, Sabatelli M, Lo Monaco M (2015) Admission neurophysiological abnormalities in Guillain-Barré syndrome: a single-center experience. Clin Neurol Neurosurg 135:6–10. https://doi.org/10.1016/j.clineuro.2015.05.001

    Article  PubMed  Google Scholar 

  35. Tyberghein M, Milants C, Bouquiaux O, Wang F (2020) Axonal form of Guillain-Barré syndrome in a patient receiving oxaliplatin-based chemotherapy. Neurol Sci 41:1611–1613. https://doi.org/10.1007/s10072-019-04199-2

    Article  PubMed  Google Scholar 

  36. Rajabally YA, Varanasi S (2013) Practical electrodiagnostic value of F-wave studies in chronic inflammatory demyelinating polyneuropathy. Clin Neurophysiol 124(1):171–175. https://doi.org/10.1016/j.clinph.2012.05.019

    Article  PubMed  Google Scholar 

  37. Kuwabara S, Misawa S (2011) Chronic inflammatory demyelinating polyneuropathy: clinical subtypes and their correlation with electrophysiology. Clin Exp Neuroimmunol 2:41–48. https://doi.org/10.1111/j.1759-1961.2011.00020.x

    Article  Google Scholar 

  38. Topa A, Dubbioso R, Iodice R, Santoro L, Manganelli F (2015) Chronic inflammatory demyelinating polyneuropathy mimicking an acute painful diabetic neuropathy. Neurol Sci 36:1509–1510. https://doi.org/10.1007/s10072-015-2122-4

    Article  PubMed  Google Scholar 

  39. Pan H, Jian F, Lin J, Chen N, Zhang C, Zhang Z, Ding Z, Wang Y, Cui L, Kimura J (2014) F-wave latencies in patients with diabetes mellitus. Muscle Nerve 49:804–808. https://doi.org/10.1002/mus.24127

    Article  PubMed  Google Scholar 

  40. Mauermann ML, Sorenson EJ, Dispenzieri A, Mandrekar J, Suarez GA, Dyck PJ, Dyck PJB (2012) Uniform demyelination and more severe axonal loss distinguish POEMS syndrome from CIDP. J Neurol Neurosurg Psychiatry 83(5):480–486. https://doi.org/10.1136/jnnp-2011-301472

    Article  PubMed  Google Scholar 

  41. Amin Lari A, Ghavanini AA, Bokaee HR (2019) A review of electrophysiological studies of lower motor neuron involvement in amyotrophic lateral sclerosis. Neurol Sci 40:1125–1136. https://doi.org/10.1007/s10072-019-03832-4

    Article  PubMed  Google Scholar 

  42. Kudina LP, Andreeva RE (2017) F-wave of single firing motor units: correct or misleading criterion of motoneuron excitability in humans? Neurol Sci 38(3):465–472. https://doi.org/10.1007/s10072-016-2796-2

    Article  PubMed  Google Scholar 

  43. Zambelis T, Giotopoulou D, Soldatos T, Anagnostou E, Rentzos M (2015) Bilateral sciatic neuropathy misdiagnosed as critical illness neuropathy: a case report. Neurol Sci 36:1707–1708. https://doi.org/10.1007/s10072-015-2241-y

    Article  PubMed  Google Scholar 

  44. Ammendola A, Gallo A, Iannaccone T, Tedeschi G (2008) Hirayama disease: three cases assessed by F wave, somatosensory and motor evoked potentials and magnetic resonance imaging not supporting flexion myelopathy. Neurol Sci 29:303–311. https://doi.org/10.1007/s10072-008-0987-1

    Article  PubMed  Google Scholar 

  45. Hoffman P (1918) Über die Beziehungen der Schnenreflexe zur willkurlichen Bewegun und zum Tonus. Z Biol 68:351–370

    Google Scholar 

  46. Hoffman P (1922) Untersuchungen uber die Eigenreflexe [Schnenreflexe] menschilicher Muskeln. Springer, Berlin

    Book  Google Scholar 

  47. Hilgevoord AA, Rour LJ, Koehlman JH, Ongerboer de Visser BW (1995) Soleus H reflex inhibition in controls and spastic patients: ordered occlusion or diffuse inhibition. Electroencephalogr Clin Neurophysiol 97:402–407

    Article  CAS  Google Scholar 

  48. Chanson JB, Echaniz-Laguna A (2014) Early electrodiagnostic abnormalities in acute inflammatory demyelinating polyneuropathy: a retrospective study of 58 patients. Clin Neurophysiol 125(9):1900–1905. https://doi.org/10.1016/j.clinph.2014.01.007

    Article  PubMed  Google Scholar 

  49. Jerath N, Kimura J (2019) F wave, A wave, H reflex, and blink reflex. Handb Clin Neurol 160:225–239. https://doi.org/10.1016/b978-0-444-64032-1.00015-1

    Article  PubMed  Google Scholar 

  50. Fullerton PM, Gilleat RW (1965) Axon reflexes in human motor nerve fibers. J Neurol Neurosurg Psychiatry 28:1–11

    Article  CAS  Google Scholar 

  51. Roth G (1993) Myo-axonal ephaptic responses and their F-wave in cases of chronic denervation. Electroencephalogr Clin Neurophysiol 89:252–260

    Article  CAS  Google Scholar 

  52. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (2014) Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment. Lancet Diabetes Endocrinol 2:634–647

    Article  Google Scholar 

  53. Bischoff C, Stålberg E, Falck B, Puksa L (1996) Significance of A-waves recorded in routine motor nerve conduction studies. Electroencephalogr Clin Neurophysiol 101:528–533

    CAS  PubMed  Google Scholar 

  54. Howe JF, Calvin WH, Loeser JD (1976) Impulses reflected from dorsal root ganglia and from focal nerve injuries. Brain Res 116:139–144

    Article  CAS  Google Scholar 

  55. Magistratis MR, Roth G (1992) Motor axon reflex and indirect double discharge: ephaptic transmission. A reappraisal. Electroeceph Clin Neurophysiol 85:124–130

    Article  Google Scholar 

  56. Hughes R (2008) Peripheral nerve diseases. Pract Neurol 8:396–405

    Article  Google Scholar 

  57. Hijazi MM, Buchmann SJ, Sedghi A, Illigens BM, Reichmann H, Schackert G, Siepmann T (2020) Assessment of cutaneous axon-reflex responses to evaluate functional integrity of autonomic small nerve fibers. Neurol Sci 41:1685–1696. https://doi.org/10.1007/s10072-020-04293-w

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sartucci F, Bocci T, Borghetti D, Orlandi G, Manfredonia F, Murri L, Giannini F, Rossi A (2010) Further insight on A-wave in acute and chronic demyelinating neuropathies. Neurol Sci 31(5):609–616. https://doi.org/10.1007/s10072-010-0354-x

    Article  PubMed  Google Scholar 

  59. Rampello L, Rampello L, Arcidiacono A (2019) A waves in diabetic neuropathy: pathophysiology and neurographic images. J Clin Neurophysiol 36(2):93–96. https://doi.org/10.1097/WNP.0000000000000515

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Anne Prudence Collins edited the English text.

Funding

This work was supported by the University of Catania, grant no. 21040104, “G.F. Ingrassia” Department.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design, analysis, interpretation and writing of the manuscript.

Corresponding author

Correspondence to Liborio Rampello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rampello, L., Rampello, L., Arcidiacono, A. et al. A waves in electroneurography: differential diagnosis with other late responses. Neurol Sci 41, 3537–3545 (2020). https://doi.org/10.1007/s10072-020-04649-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04649-2

Keywords

Navigation